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Trefftz-like Coarse Space for Perforated Domains

Model problem and Introduction

Motivation

I Efficiently solve problems on perforated domains.
I Numerous holes representing buildings and walls in urban data;
I Can be considered a heterogeneous domain with coefficients 0, 1.
I Expect corner singularities
I Want to avoid global fine-scale solve.

I We begin with the linear Poisson equation before moving to
nonlinear problems (Diffusive Wave model).

I Applications: flood modelling in urban areas.
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Trefftz-like Coarse Space for Perforated Domains

Model problem and Introduction

Model PDE: Linear

I D: Open simply connected polygonal domain in R2;

I (ΩS,k)k : Finite family of perforations in D;

I ΩS =
⋃

k ΩS,k and Ω = D \ ΩS .
−∆u = f in Ω,
∂u

∂n
= 0 on ∂Ω ∩ ∂ΩS ,

u = 0 on ∂Ω \ ∂ΩS .

With a P1 finite element discretization, this discretely becomes the linear
system

Au = f.
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Trefftz-like Coarse Space for Perforated Domains

Overlapping Schwarz methods

Domain Decomposition Approach

I ’Divide and conquer’: Break up problem into subdomains;

I Two levels of discretization: ’Coarse’ and ’fine’;

I Local subdomain solves can be done in parallel;

I Can use overlapping Schwarz methods as iterative solver or as
preconditioner for Krylov;

Idea: Solve model problem on each subdomain locally, with boundary
conditions taken from adjacent subdomains when possible.
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Trefftz-like Coarse Space for Perforated Domains

Overlapping Schwarz methods

Parallel Schwarz Introduction for Lu = f : 2 subdomains

Continuously, the local classical additive Schwarz iteration is given by

Lun+1
1 = f in Ω1 Lun+1

2 = f in Ω2

un+1
1 = un2 on ∂Ω1 ∩ Ω2 un+1

2 = un1 on ∂Ω2 ∩ Ω1

Algebraically, the global stationary (RAS) iteration becomes

un+1 = un +

 2∑
j=1

RT
j Dj(RjAR

T
j )−1Rj

 (f − Aun)

and the preconditioned system is given by 2∑
j=1

RT
j Dj(RjAR

T
j )−1Rj

Au =

 2∑
j=1

RT
j Dj(RjAR

T
j )−1Rj

 f

I Rj notation allows for global iteration, algebraic definition,
overlapping subdomains.
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Trefftz-like Coarse Space for Perforated Domains

Overlapping Schwarz methods

1D example- Restriction, POU matrices

Given set of indices N = {0, 1, 2, 3, 4}: partitioned into N1 = {0, 1, 2, 3}
and N2 = {2, 3, 4}, restriction and partition of unity matrices are given as

R1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 R2 =

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


and

D1 =


1 0 0 0
0 1 0 0
0 0 1

2 0
0 0 0 1

2

 D2 =

 1
2 0 0
0 1

2 0
0 0 1


I Satisfies I =

∑2
j=1 R

T
j DjRj .
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Trefftz-like Coarse Space for Perforated Domains

Overlapping Schwarz methods

Need for coarse correction

I Coarse corrections allows for global communication between all
subdomains.

I Coarse correction (two-level methods) necessary for scalability for
large number of subdomains.

I Generally, without coarse correction: Iterations scale with N.
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Trefftz-like Coarse Space for Perforated Domains

Overlapping Schwarz methods

2-level RAS iteration: N Subdomains

Combine (multiplicitavely) the 1-level RAS iteration

M−1
RAS,1 =

N∑
j=1

RT
j Dj(RjAR

T
j )−1Rj

with the coarse approximation

M−1
0 = RT

0 (R0AR
T
0 )−1R0.

and solve

un+ 1
2 = un + M−1

RAS,1(f − Aun),

un+1 = un+ 1
2 + M−1

0 (f − Aun+ 1
2 ),

I Rj : Correspond to overlapping subdomains.
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Trefftz-like Coarse Space for Perforated Domains

Overlapping Schwarz methods

The 2-level preconditioner for Krylov

Combine (additively) the 1-level RAS iteration

M−1
RAS,1 =

N∑
j=1

RT
j Dj(RjAR

T
j )−1Rj

with the coarse approximation

M−1
0 = RT

0 (R0AR
T
0 )−1R0.

to give
M−1

RAS,2 = M−1
0 + M−1

RAS,1.

and solve
M−1

RAS,2Au = M−1
RAS2f.
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Trefftz-like Coarse Space for Perforated Domains

Overlapping Schwarz methods

(Some) existing overlapping Schwarz coarse spaces

I Nicolaides: Piecewise constant by subdomain;

I Spectral spaces (eigenvalue problems): DtN, GenEO, SHEM
(spectrally enriched MSFEM);

I Energy-minimizing spaces: GDSW, AGDSW, RGDSW;

I Multi-scale FEM: MsFEM
I Numerically compute harmonic basis functions.
I Used to approximate solution on coarse grid, but can use as DD

coarse space!
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Trefftz-like Coarse Space for Perforated Domains

Overlapping Schwarz methods

Choice of coarse space

I Idea: want to take advantage of a-priori location of perforations
(buildings/walls);

I Want robustness with respect to perforation size/location (even
along subdomain interfaces);

I Want to choose a coarse space with approximation properties to
improve convergence;

I Choose: Local harmonic basis functions occuring at intersection of a
perforation with the coarse skeleton.
I Think of as ’enriching’ MsFEM coarse space.
I Works on nonoverlapping subdomains Ω′

j .
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Trefftz-like Coarse Space for Perforated Domains

Construction of Coarse Space

Coarse-cell conforming triangulation

Mesh generation process:

I Larger N � more basis functions, larger coarse matrix ;

I Triangulate after nonoverlapping coarse cell partitioning Ω′j ;

I Overlap subdomains by layers of triangles for RAS.

2×2 subdomains 8×8 subdomains
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Trefftz-like Coarse Space for Perforated Domains

Construction of Coarse Space

Coarse grid nodes for coarse space basis functions

I Nonoverlapping skeleton:
Γ =

⋃
j∈{1,...,N} ∂Ω′j ;

I (ek)k=1,...,Ne
: Partitioning

of Γ;
I each “coarse edge” ek is

an open planar segment;

I Set of coarse grid nodes:⋃
k=1,...,Ne

∂ek
I (φs)s∈{1,...,Nx} : Locally

harmonic basis functions for
each coarse grid node.

I # of coarse grid nodes is
automatically generated.
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Trefftz-like Coarse Space for Perforated Domains

Construction of Coarse Space

Basis functions: boundary conditions

For each coarse grid node xs ,
define gs : Γ → [0, 1] as: for
i = 1, . . .Nx,

gs(xi ) =

{
1, s = i ,

0, s 6= i ,

I gs is linearly extended
on the remainder of Γ.

I Can also include
higher-order polynomials
on coarse edges.
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Trefftz-like Coarse Space for Perforated Domains

Construction of Coarse Space

Basis functions: Harmonic local solutions

For all nonoverlapping
(
Ω′j
)
j∈{1,...,N} and s = 1, . . . ,Nx, to obtain

φs,j = φs |Ωj , solve


−∆φs,j = 0 in Ω′j ,

−∂φs,j
∂n

= 0 on ∂Ω′j ∩ ∂ΩS ,

φs,j = gs on ∂Ω′j \ ∂ΩS .

I supp(φs) = {
⋃

j Ω′j | xs is a coarse grid node belonging to ∂Ω′j}.
I Continuously, the coarse space is given by

VH = span{φs}.
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Trefftz-like Coarse Space for Perforated Domains

Construction of Coarse Space

Approximation properties: Coarse approximation

Discretely, given
M−1

0 = RT
0 (R0AR

T
0 )−1R0.

the coarse approximation is the solution of

uH = M−1
0 f.

I Can use uH as initial iterate for iteration, Krylov methods.
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Trefftz-like Coarse Space for Perforated Domains

Construction of Coarse Space

Experiment 1: Iterative RAS, L-shaped domain

I Provide iterative RAS results for
preliminary L-shaped domain;
I L-shaped domain: Square

domain with one perforation;
I Allows us to compare to

analytical solution.
I Perform additional

refinement at the singularity
to improve convergence and
FE error;

I Keep N constant, vary h and
improve FE error;

I In spirit of iterative methods.
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Trefftz-like Coarse Space for Perforated Domains

Numerical Results: Iterative

Numerical Results: Iterative RAS (L-shaped domain)

SD error True error

I SD error: Error from algebraic single domain FE solution;

I True error: Error from analytical true solution.
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Trefftz-like Coarse Space for Perforated Domains

Numerical Results: Iterative

Edge refinement

Orig. coarse grid nodes Additional edge refinement

I Improves coarse approximation;

I No changes to coarse skeleton Γ.

I Idea from MHM literature.
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Trefftz-like Coarse Space for Perforated Domains

Numerical Results: Iterative

Numerical Results: Iterative RAS (L-shaped domain) Edge
refinement

SD error True error

I Vary H = maxk=1,...,Ne |ek |, keep h constant;
I Edge refinement provides additional acceleration (better coarse

approx., steeper slope).
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Trefftz-like Coarse Space for Perforated Domains

Numerical Results: Iterative

Experiment 2: Iterative+Krylov, real data set

I Provide same iterative
convergence curves as L-shaped
domain;

I Also provide convergence curves
for preconditioned GMRES;

I Multiple singularities and no
analytical solution available.
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Trefftz-like Coarse Space for Perforated Domains

Numerical Results: Iterative

Numerical Results: Iterative RAS (Real data)

SD error True error

I SD error: Error from algebraic single domain FE solution;

I True error: Error from fine FE solution.

23 / 28



Trefftz-like Coarse Space for Perforated Domains

Numerical Results: Krylov

Numerical Results: Krylov

SD error True error
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Trefftz-like Coarse Space for Perforated Domains

Numerical Results: Krylov

Experiment 3: Krylov Scalability, large real data set

≈ 300K DOFS in FE triangu-
lation.

I Want to show scalability:

I “Strong” scalability tests: Keep
model domain and h constant,
vary N.
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Trefftz-like Coarse Space for Perforated Domains

Numerical Results: Krylov

Numerical Results: Krylov (table)

Trefftz
it. dim. (rel)

N min H
20

16 56 22 400 (16.0)
64 56 26 880 (10.9)

256 59 30 1912 (6.6)
1024 61 28 4253 (3.9)

I Relative dimension (rel): Compared to would-be homogeneous

domain, dim(R0)

(
√
N+1)2

.

I Relative dimension reduces as N increases;

I Trefftz-like space produces scalable, accelerated iterations.
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Trefftz-like Coarse Space for Perforated Domains

Closing Remarks

Closing Remarks

I We have presented a novel Trefftz-like coarse space that can be used
to approximate the fine-scale solution;

I The space can also be used in combination with Schwarz methods
to achieve fine-scale accuracy.

I Achieve fine-scale error in a small number of iterations, limited by
finite element error;

I Krylov: Trefftz is Robust with respect to number of subdomains on
a fixed total domain size, and provides an additional acceleration in
terms of Krylov iteration count.

I However, the dimension of the Trefftz-like coarse space is large and
controlled by the model geometry.
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