Miranda Boutilier

In collaboration with Konstantin Brenner and Victorita Dolean

Université Côte d'Azur, LJAD, CNRS

IMPDE 2023, May 15th, 2023

Outline

Model problem and Introduction

Overlapping Schwarz methods

Construction of Coarse Space

Numerical Results: Iterative

Numerical Results: Krylov

Motivation

- Efficiently solve problems on perforated domains.
 - Numerous holes representing buildings and walls in urban data;
 - Can be considered a heterogeneous domain with coefficients 0, 1.
 - Expect corner singularities
 - Want to avoid global fine-scale solve.
- We begin with the linear Poisson equation before moving to nonlinear problems (Diffusive Wave model).
- Applications: flood modelling in urban areas.

Model PDE: Linear

- ▶ *D*: Open simply connected polygonal domain in \mathbb{R}^2 ;
- $(\Omega_{S,k})_k$: Finite family of perforations in *D*;

•
$$\Omega_S = \bigcup_k \Omega_{S,k}$$
 and $\Omega = D \setminus \overline{\Omega_S}$.

$$\begin{cases} -\Delta u = f & \text{in} \quad \Omega, \\ \frac{\partial u}{\partial n} = 0 & \text{on} \quad \partial \Omega \cap \partial \Omega_{S}, \\ u = 0 & \text{on} \quad \partial \Omega \setminus \partial \Omega_{S}. \end{cases}$$

With a P1 finite element discretization, this discretely becomes the linear system

$$Au = f$$
.

Domain Decomposition Approach

- 'Divide and conquer': Break up problem into subdomains;
- Two levels of discretization: 'Coarse' and 'fine';
- Local subdomain solves can be done in parallel;
- Can use overlapping Schwarz methods as iterative solver or as preconditioner for Krylov;

Idea: Solve model problem on each subdomain locally, with boundary conditions taken from adjacent subdomains when possible.

Parallel Schwarz Introduction for $\mathcal{L}u = f$: 2 subdomains

Continuously, the local classical additive Schwarz iteration is given by

$$\mathcal{L}u_1^{n+1} = f \quad \text{in} \quad \Omega_1 \qquad \mathcal{L}u_2^{n+1} = f \quad \text{in} \quad \Omega_2 \\ u_1^{n+1} = u_2^n \quad \text{on} \quad \partial\Omega_1 \cap \Omega_2 \qquad u_2^{n+1} = u_1^n \quad \text{on} \quad \partial\Omega_2 \cap \Omega_1$$

Algebraically, the global stationary (RAS) iteration becomes

$$\mathbf{u}^{n+1} = \mathbf{u}^n + \left(\sum_{j=1}^2 \mathbf{R}_j^T \mathbf{D}_j (\mathbf{R}_j \mathbf{A} \mathbf{R}_j^T)^{-1} \mathbf{R}_j\right) (\mathbf{f} - \mathbf{A} \mathbf{u}^n)$$

and the preconditioned system is given by

$$\left(\sum_{j=1}^{2} \mathbf{R}_{j}^{\mathsf{T}} \mathbf{D}_{j} (\mathbf{R}_{j} \mathbf{A} \mathbf{R}_{j}^{\mathsf{T}})^{-1} \mathbf{R}_{j}\right) \mathbf{A} \mathbf{u} = \left(\sum_{j=1}^{2} \mathbf{R}_{j}^{\mathsf{T}} \mathbf{D}_{j} (\mathbf{R}_{j} \mathbf{A} \mathbf{R}_{j}^{\mathsf{T}})^{-1} \mathbf{R}_{j}\right) \mathbf{f}$$

 R_j notation allows for global iteration, algebraic definition, overlapping subdomains.

1D example- Restriction, POU matrices

Given set of indices $\mathcal{N} = \{0, 1, 2, 3, 4\}$: partitioned into $\mathcal{N}_1 = \{0, 1, 2, 3\}$ and $\mathcal{N}_2 = \{2, 3, 4\}$, restriction and partition of unity matrices are given as

$$\mathbf{R}_1 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad \mathbf{R}_2 = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

and

$$\mathbf{D}_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2} \end{bmatrix} \qquad \mathbf{D}_{2} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{D}_{2} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Need for coarse correction

- Coarse corrections allows for global communication between all subdomains.
- Coarse correction (two-level methods) necessary for scalability for large number of subdomains.
- Generally, without coarse correction: Iterations scale with *N*.

2-level RAS iteration: N Subdomains

Combine (multiplicitavely) the 1-level RAS iteration

$$M_{RAS,1}^{-1} = \sum_{j=1}^{N} \mathbf{R}_{j}^{T} \mathbf{D}_{j} (\mathbf{R}_{j} \mathbf{A} \mathbf{R}_{j}^{T})^{-1} \mathbf{R}_{j}$$

with the coarse approximation

$$M_0^{-1} = \mathbf{R}_0^T (\mathbf{R}_0 \mathbf{A} \mathbf{R}_0^T)^{-1} \mathbf{R}_0.$$

and solve

$$\begin{split} \mathbf{u}^{n+\frac{1}{2}} &= \mathbf{u}^n + M_{RAS,1}^{-1}(\mathbf{f} - \mathbf{A}\mathbf{u}^n), \\ \mathbf{u}^{n+1} &= \mathbf{u}^{n+\frac{1}{2}} + M_0^{-1}(\mathbf{f} - \mathbf{A}\mathbf{u}^{n+\frac{1}{2}}), \end{split}$$

R_j : Correspond to overlapping subdomains.

The 2-level preconditioner for Krylov

Combine (additively) the 1-level RAS iteration

$$M_{RAS,1}^{-1} = \sum_{j=1}^{N} \mathbf{R}_{j}^{T} \mathbf{D}_{j} (\mathbf{R}_{j} \mathbf{A} \mathbf{R}_{j}^{T})^{-1} \mathbf{R}_{j}$$

with the coarse approximation

$$M_0^{-1} = \mathbf{R}_0^T (\mathbf{R}_0 \mathbf{A} \mathbf{R}_0^T)^{-1} \mathbf{R}_0.$$

to give

$$M_{RAS,2}^{-1} = M_0^{-1} + M_{RAS,1}^{-1}.$$

and solve

$$M_{RAS,2}^{-1}\mathbf{A}\mathbf{u}=M_{RAS2}^{-1}\mathbf{f}.$$

(Some) existing overlapping Schwarz coarse spaces

- Nicolaides: Piecewise constant by subdomain;
- Spectral spaces (eigenvalue problems): DtN, GenEO, SHEM (spectrally enriched MSFEM);
- Energy-minimizing spaces: GDSW, AGDSW, RGDSW;
- Multi-scale FEM: MsFEM
 - Numerically compute harmonic basis functions.
 - Used to approximate solution on coarse grid, but can use as DD coarse space!

Choice of coarse space

- Idea: want to take advantage of a-priori location of perforations (buildings/walls);
- Want robustness with respect to perforation size/location (even along subdomain interfaces);
- Want to choose a coarse space with approximation properties to improve convergence;
- Choose: Local harmonic basis functions occuring at intersection of a perforation with the coarse skeleton.
 - Think of as 'enriching' MsFEM coarse space.
 - Works on nonoverlapping subdomains Ω'_i.

Coarse-cell conforming triangulation

Mesh generation process:

- ▶ Larger $N \rightarrow$ more basis functions, larger coarse matrix ;
- Triangulate after nonoverlapping coarse cell partitioning Ω'_i ;
- Overlap subdomains by layers of triangles for RAS.

 $2{\times}2$ subdomains

 $8{\times}8$ subdomains

Coarse grid nodes for coarse space basis functions

- Nonoverlapping skeleton:
 - $\Gamma = \bigcup_{j \in \{1, \dots, N\}} \partial \Omega'_j;$
- (e_k)_{k=1,...,N_e}: Partitioning of Γ;
 - each "coarse edge" e_k is an open planar segment;
- Set of coarse grid nodes: $\bigcup_{k=1,\ldots,N_e} \partial e_k$
- (φ_s)_{s∈{1,...,N_x}} : Locally harmonic basis functions for each coarse grid node.
- # of coarse grid nodes is automatically generated.

Basis functions: boundary conditions

For each coarse grid node \mathbf{x}_s , define $g_s : \Gamma \rightarrow [0, 1]$ as: for $i = 1, \dots N_{\mathbf{x}}$,

$$g_s(\mathbf{x}_i) = \begin{cases} 1, & s = i, \\ 0, & s \neq i, \end{cases}$$

- g_s is linearly extended on the remainder of Γ.
- Can also include higher-order polynomials on coarse edges.

Basis functions: Harmonic local solutions

For all nonoverlapping $(\Omega'_j)_{j\in\{1,\dots,N\}}$ and $s=1,\dots,N_x$, to obtain $\phi_{s,j}=\phi_s|_{\Omega_j}$, solve

$$\left\{ \begin{array}{rrrr} -\Delta\phi_{s,j}&=&0\quad \text{in}\quad \Omega_j',\\ -\frac{\partial\phi_{s,j}}{\partial n}&=&0\quad \text{on}\quad \partial\Omega_j'\cap\partial\Omega_S,\\ \phi_{s,j}&=&g_s\quad \text{on}\quad \partial\Omega_j'\setminus\partial\Omega_S. \end{array} \right.$$

supp(φ_s) = { ⋃_j Ω'_j | x_s is a coarse grid node belonging to ∂Ω'_j}.
 Continuously, the coarse space is given by

$$V_H = \operatorname{span}\{\phi_s\}.$$

Approximation properties: Coarse approximation

Discretely, given

$$M_0^{-1} = \mathbf{R}_0^T (\mathbf{R}_0 \mathbf{A} \mathbf{R}_0^T)^{-1} \mathbf{R}_0.$$

the coarse approximation is the solution of

$$\mathbf{u}_H = M_0^{-1}\mathbf{f}.$$

Can use u_H as initial iterate for iteration, Krylov methods.

Experiment 1: Iterative RAS, L-shaped domain

- Provide iterative RAS results for preliminary L-shaped domain;
 - L-shaped domain: Square domain with one perforation;
 - Allows us to compare to analytical solution.
 - Perform additional refinement at the singularity to improve convergence and FE error;
- Keep N constant, vary h and improve FE error;
- In spirit of iterative methods.

Numerical Results: Iterative RAS (L-shaped domain)

- SD error: Error from algebraic single domain FE solution;
- True error: Error from analytical true solution.

Edge refinement

Orig. coarse grid nodes

- Improves coarse approximation;
- No changes to coarse skeleton Γ.
- Idea from MHM literature.

Additional edge refinement

Numerical Results: Iterative RAS (L-shaped domain) Edge refinement

- Vary $H = max_{k=1,...,N_e}|e_k|$, keep h constant;
- Edge refinement provides additional acceleration (better coarse approx., steeper slope).

Experiment 2: Iterative+Krylov, real data set

- Provide same iterative convergence curves as L-shaped domain;
- Also provide convergence curves for preconditioned GMRES;
- Multiple singularities and no analytical solution available.

Numerical Results: Iterative RAS (Real data)

- SD error: Error from algebraic single domain FE solution;
- True error: Error from fine FE solution.

Numerical Results: Krylov

Experiment 3: Krylov Scalability, large real data set

 \approx 300K DOFS in FE triangulation.

- Want to show scalability:
- "Strong" scalability tests: Keep model domain and h constant, vary N.

Numerical Results: Krylov (table)

	Trefftz		
	it.		dim. (rel)
N	min	$\frac{H}{20}$	
16	56	22	400 (16.0)
64	56	26	880 (10.9)
256	59	30	1912 (6.6)
1024	61	28	4253 (3.9)

- ► Relative dimension (rel): Compared to would-be homogeneous domain, $\frac{\dim(R_0)}{(\sqrt{N}+1)^2}$.
- Relative dimension reduces as N increases;
- Trefftz-like space produces scalable, accelerated iterations.

We have presented a novel Trefftz-like coarse space that can be used to approximate the fine-scale solution;

- We have presented a novel Trefftz-like coarse space that can be used to approximate the fine-scale solution;
- The space can also be used in combination with Schwarz methods to achieve fine-scale accuracy.

- We have presented a novel Trefftz-like coarse space that can be used to approximate the fine-scale solution;
- The space can also be used in combination with Schwarz methods to achieve fine-scale accuracy.
- Achieve fine-scale error in a small number of iterations, limited by finite element error;

- We have presented a novel Trefftz-like coarse space that can be used to approximate the fine-scale solution;
- The space can also be used in combination with Schwarz methods to achieve fine-scale accuracy.
- Achieve fine-scale error in a small number of iterations, limited by finite element error;
- Krylov: Trefftz is **Robust** with respect to number of subdomains on a fixed total domain size, and provides an additional **acceleration** in terms of Krylov iteration count.

- We have presented a novel Trefftz-like coarse space that can be used to approximate the fine-scale solution;
- The space can also be used in combination with Schwarz methods to achieve fine-scale accuracy.
- Achieve fine-scale error in a small number of iterations, limited by finite element error;
- Krylov: Trefftz is **Robust** with respect to number of subdomains on a fixed total domain size, and provides an additional **acceleration** in terms of Krylov iteration count.
- However, the dimension of the Trefftz-like coarse space is large and controlled by the model geometry.

Funding Acknowledgement

This work has been supported by ANR Project Top-up (ANR-20-CE46-0005).

We also thank Métropole Nice Côte d'Azur for the given data.

Thank you for your time!