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Introduction

• The bidomain cardiac model1 is widely used in computational

cardiology in order to describe the propagation of the electric

potential on the cardiac tissue

• Due to its computational expensiveness, it is important having

robust preconditioners in order to solve it numerically

• In this talk we will present the results of tests regarding the

application of different Algebraic Multigrid implementations to

precondition this problem on multiple CPUs and GPUs

1P. Colli Franzone, L.F. Pavarino, and S. Scacchi. Mathematical Cardiac

Electrophysiology. Reading, Mass.: Springer Cham, 2014.
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The Bidomain Model

• We will consider the Parabolic-Elliptic formulation

On a space domain Ω (intra and extracellular domains overlap)

and a time interval (0,T)

χCm
∂v
∂t −∇ · (Di∇v) +∇ · (Di∇ue) + χIion(v ,w, c) = I iappin Ω× (0,T ),

−∇ · (Di∇v)−∇ · ((Di + De)∇ue) = I iapp + I eapp in Ω× (0,T ),

∂w
∂t − R(v ,w) = 0 inΩ× (0,T ),

∂c
∂t − C(v ,w, c) = 0 inΩ× (0,T ),

n⊤Di∇(v + ue) = 0 inΩ× (0,T ),

n⊤(Di + De)∇ue + n⊤Di∇v = 0 inΩ× (0,T ).

Where v is the transmembrane potential, ue extracellular potential,

w, c gating and concentration variables related to the ionic model
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The Bidomain Model

In our setting the problem is

spatially discretized through FEM

using Q1 elements and ten

Tusscher (TT) model is used as

ionic model

χCmM
∂vh
∂t + Aivh + Aiue,h + χMIhion(vh,wh, ch) = MIi ,happ

Aivh + (Ae + Ai )ue,h = M(Ii ,happ + Ie,happ)

4/28



The Bidomain Model

In our setting the problem is

spatially discretized through FEM

using Q1 elements and ten

Tusscher (TT) model is used as

ionic model

χCmM
∂vh
∂t + Aivh + Aiue,h + χMIhion(vh,wh, ch) = MIi ,happ

Aivh + (Ae + Ai )ue,h = M(Ii ,happ + Ie,happ)

4/28



The Bidomain Model

In our setting the problem is

spatially discretized through FEM

using Q1 elements and ten

Tusscher (TT) model is used as

ionic model

χCmM
∂vh
∂t + Aivh + Aiue,h + χMIhion(vh,wh, ch) = MIi ,happ

Aivh + (Ae + Ai )ue,h = M(Ii ,happ + Ie,happ)

4/28



The Bidomain Model

In our setting the problem is

spatially discretized through FEM

using Q1 elements and ten

Tusscher (TT) model is used as

ionic model

χCmM
∂vh
∂t + Aivh + Aiue,h + χMIhion(vh,wh, ch) = MIi ,happ

Aivh + (Ae + Ai )ue,h = M(Ii ,happ + Ie,happ)

4/28



The Bidomain Model

In our setting the problem is

spatially discretized through FEM

using Q1 elements and ten

Tusscher (TT) model is used as

ionic model

χCmM
∂vh
∂t + Aivh + Aiue,h + χMIhion(vh,wh, ch) = MIi ,happ

Aivh + (Ae + Ai )ue,h = M(Ii ,happ + Ie,happ)

4/28



The Bidomain Model

In our setting the problem is

spatially discretized through FEM

using Q1 elements and ten

Tusscher (TT) model is used as

ionic model

χCmM
∂vh
∂t + Aivh + Aiue,h + χMIhion(vh,wh, ch) = MIi ,happ

Aivh + (Ae + Ai )ue,h = M(Ii ,happ + Ie,happ)

4/28



The Bidomain Model

In our setting the problem is

spatially discretized through FEM

using Q1 elements and ten

Tusscher (TT) model is used as

ionic model

χCmM
∂vh
∂t + Aivh + Aiue,h + χMIhion(vh,wh, ch) = MIi ,happ

Aivh + (Ae + Ai )ue,h = M(Ii ,happ + Ie,happ)

4/28



The Bidomain Model

In our setting the problem is

spatially discretized through FEM

using Q1 elements and ten

Tusscher (TT) model is used as

ionic model

χCmM
∂vh
∂t + Aivh + Aiue,h + χMIhion(vh,wh, ch) = MIi ,happ

Aivh + (Ae + Ai )ue,h = M(Ii ,happ + Ie,happ)

4/28



The Bidomain Model

In our setting the problem is

spatially discretized through FEM

using Q1 elements and ten

Tusscher (TT) model is used as

ionic model

χCmM
∂vh
∂t + Aivh + Aiue,h + χMIhion(vh,wh, ch) = MIi ,happ

Aivh + (Ae + Ai )ue,h = M(Ii ,happ + Ie,happ)

4/28



The Bidomain Model

In our setting the problem is

spatially discretized through FEM

using Q1 elements and ten

Tusscher (TT) model is used as

ionic model

χCmM
∂vh
∂t + Aivh + Aiue,h + χMIhion(vh,wh, ch) = MIi ,happ

Aivh + (Ae + Ai )ue,h = M(Ii ,happ + Ie,happ)

4/28



The Bidomain Model

In our setting the problem is

spatially discretized through FEM

using Q1 elements and ten

Tusscher (TT) model is used as

ionic model

χCmM
∂vh
∂t + Aivh + Aiue,h + χMIhion(vh,wh, ch) = MIi ,happ

Aivh + (Ae + Ai )ue,h = M(Ii ,happ + Ie,happ)

4/28



The Bidomain Model

In our setting the problem is

spatially discretized through FEM

using Q1 elements and ten

Tusscher (TT) model is used as

ionic model

χCmM
∂vh
∂t + Aivh + Aiue,h + χMIhion(vh,wh, ch) = MIi ,happ

Aivh + (Ae + Ai )ue,h = M(Ii ,happ + Ie,happ)

4/28



The Bidomain Model

In our setting the problem is

spatially discretized through FEM

using Q1 elements and ten

Tusscher (TT) model is used as

ionic model

χCmM
∂vh
∂t + Aivh + Aiue,h + χMIhion(vh,wh, ch) = MIi ,happ

Aivh + (Ae + Ai )ue,h = M(Ii ,happ + Ie,happ)

4/28



Unstructured mesh

We have solved the same

problem presented before

on an unstructured mesh

representing a ventricle,

with 3 different resolutions
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Preconditioned Conjugate Gradient (PCG)

Algorithm 1 PCG

r0 = b − Ax0

z0 = M−1 r0 ▷ Preconditioning step

p0 = z0

k = 0

for k = 0; k < maxiter; k++ do

αk =
r ′k rk

p′k Apk

xk = xk + αk pk

rk = rk − αk Apk

if rk is sufficiently small then

exit loop

end if

zk = M−1 rk ▷ Preconditioning step

βk =
r ′k zk
r ′k zk

pk = zk + βk pk

end for

return xk 6/28



Algebraic Multigrid (AMG)

In this work used for preconditioning CG for the elliptic equation

High frequency components of the error are removed by relaxation,

smooth components by grid correction 7/28



AMG Setup phase

Algorithm 2 AMG setup phase

for k = 1; k < M; k ++ do

Partition Ωk into disjoint sets C k and F k .

Set Ωk+1 = C k .

Define interpolation Pk .

Define restriction Rk (often Rk = (Pk)⊤).

Ak+1 ← RkAkPk

Set up smoother Sk .

end for
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AMG V-cycle algorithm

Algorithm 3 MGV(Ak ,Rk ,Pk ,Sk , uk , f k)

if k == M then

solve AMuM = f M with a direct solver.

else

apply the smoother Sk µ1 times to Akuk = f k .

rk ← f k − Akuk ▷ Coarse grid correction step

rk+1 ← Rk rk

apply MGV(Ak+1,Rk+1,Pk+1,Sk+1, ek+1, rk+1) ▷ Recursion

ek ← Pkek+1 ▷ Interpolation step

uk ← uk + ek ▷ Correction

apply the smoother Sk µ2 times to Akuk = f k .

end if
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Algebraic Multigrid (AMG)

Assumption: Smooth error −→ small residual

Ae ≈ 0
n∑

j=1

aijej ≈ 0 =⇒ aiiei ≈ −
∑
j ̸=i

aijej

Assumption: for any aij sufficiently small, we can replace ej with ei

=⇒ This motivates the definition of thresholds for coarsening
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implementations

PETSc (version 3.17) with

• gamg, PETSc native implementation

• BoomerAMG, high performance parallel implementation

provided by the Hypre library2 (partially wrapped in PETSc)

2Robert D. Falgout and Ulrike Meier Yang. “hypre: A Library of High

Performance Preconditioners”. In: Computational Science — ICCS 2002.

Ed. by Peter M. A. Sloot et al. Berlin, Heidelberg: Springer Berlin Heidelberg,

2002, pp. 632–641. isbn: 978-3-540-47789-1.
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Threshold (gamg)

Modified Maximal Independent Set (MIS) algorithm3

A graph is built from the nodes i , j of the elements ai ,j of the

matrix A and a weigth wij =
|aij |√
|aiiajj |

is attributed to each edge

(i , j). A threshold on the edge weigth is thus set such that at each

coarsening step all the edges with weigth less that the threshold

are cut.

3Mark F Adams. “Algebraic multigrid methods for constrained linear systems

with applications to contact problems in solid mechanics”. In: Numerical linear

algebra with applications 11.2-3 (2004), pp. 141–153.
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Strong Threshold (Hypre)

Hybrid-MIS (HMIS) algorithm4

A is explored and for each row the coarsening nodes are chosen

between the ones satisfying the condition

|ai ,j | ≥ αmax
k ̸=i
|ai ,k | (1)

with α called strong threshold parameter

4Hans De Sterck, Ulrike Meier Yang, and Jeffrey J Heys. “Reducing

complexity in parallel algebraic multigrid preconditioners”. In: SIAM Journal on

Matrix Analysis and Applications 27.4 (2006), pp. 1019–1039.
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PETSc Setup

gamg:

• solver: CG

• V cycle

• smoother: Chebyshev

• same smoother post and pre

coarse grid correction

• Coarsening: Maximal
Independent Set (MIS)

• Threshold: from 0.0

(default) up to 0.07

• Number of levels: 2

Hypre:

• solver: CG

• V cycle

• smoother: Hybrid

Gauss-Seidel

• same smoother post and pre

coarse grid correction

• Coarsening: Hybrid Modified
Independent set (HMIS)

• Strong threshold: from

0.25 (default) up to 0.8

• Number of levels: 2
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Architecture

MARCONI100 (CINECA)

• 980 compute nodes with:

• 2x16 cores IBM POWER9 AC922 at 3.1 GHz

• 4 x NVIDIA Volta V100 GPUs, Nvlink 2.0, 16GB

• 256 GB RAM

• Disk Space: 8PB GPFS storage
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Tuning Threshold for Structured Mesh

32768 dofs

Results for different threshold parameters for Hypre GPU

Threshold Itmean parab Itmean ellip Tmemb, mean (s) Tparab, mean (s) Tellip, mean (s)

0.25 25.22 23.30 8.9E-03 1.4E-02 9.6E-02

0.3 25.22 19.29 8.9E-03 1.4E-02 7.4E-02

0.4 25.22 13.92 8.9E-03 1.4E-02 5.6E-02

0.5 25.22 22.81 8.9E-03 1.4E-02 0.10

0.6 25.22 24.57 8.9E-03 1.5E-02 0.11

0.7 25.22 32.11 8.9E-03 1.4E-02 0.15
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Tuning Threshold for Structured Mesh

32768 dofs

Best results for different implementations

Threshold Itmean parab Itmean ellip Tmemb, mean (s) Tparab, mean (s) Tellip, mean (s)

Hypre (GPU) 0.4 25.22 13.92 8.9E-03 1.4E-02 5.6E-02

Hypre (CPU) 0.5 3.00 6.27 9.4E-03 2.0E-03 2.4E-02

gamg (CPU) 0.07 3.00 9.64 8.8E-03 2.1E-03 0.07

17/28



Results for Structured Mesh

2163330 dofs fixed size problem
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parabolic

Strong scaling test on CPU. Time and iterations vs number of CPUs.
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Results for Structured Mesh

9826 dofs for each GPU
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Results for Structured Mesh

9826 dofs for each CPU
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Weak scaling test on CPU (16 nodes) for the structured mesh.
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Unstructured mesh

Name Physical DOFs Elements

U-mesh 1 35725 30108

U-mesh 2 258415 240864

U-mesh 3 1987285 1926912
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Tuning Threshold for Unstructured Mesh

35725 dofs - U-Mesh 1

Best results for different implementations

Threshold Itmean parab Itmean ellip Tmemb, mean (s) Tparab, mean (s) Tellip, mean (s)

Hypre (GPU) 0.6 40.28 5.41 1.65e-04 2.51e-02 4.46E-02

Hypre (CPU) 0.5 5.12 3.06 1.09E-02 1.3E-03 3.0E-02

gamg (CPU) 0.07 5.12 11.77 2.8E-03 1.3E-03 4.3E-02
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Results for Unstructured Mesh
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Comparison between times and iterations for solving the elliptic system

on different unstructured meshes with Hypre on CPU vs number of GPUs
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Results for Unstructured Mesh
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Results for Unstructured Mesh
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Comparison between times and iterations for solving the elliptic system

on U-mesh 3 with gamg and Hypre on CPU
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Results

Best results on CPU and GPU for the structured mesh

(2163330 dofs)

Num GPU Itmean parab Itmean ellip Tmemb, mean (s) Tparab, mean (s) Tellip, mean (s)

4 GPU (h) 13.9 5.7 8.4E-04 1.6E-02 5.5E-02

128 CPU (h) 5.0 9.7 1.8E-02 9.2E-03 2.0E-01

256 CPU (g) 5.0 10.3 9.4E-03 5.1E-03 9.1E-01

h stays for Hypre, g for gamg
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Results

Best results on CPU and GPU for the unstructured mesh

(U-Mesh 3, 1987285 dofs)

Num GPU Itmean parab Itmean ellip Tmemb, mean (s) Tparab, mean (s) Tellip, mean (s)

8 GPU (h) 57.7 8.4 1.2E-02 1.8E-01 3.3E-01

512 CPU (h) 27.7 6.1 1.2E-02 7.5E-02 1.2

128 CPU (g) 27.7 1.8 9.8E-04 4.9E-02 1.1

h stays for Hypre, g for gamg
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Conclusion

• On CPU we have confirmed the scalability properties of

AMG5, both on structured and unstructured mesh

• On GPU we obtained better performance with respect to CPU

• Benefits and drawbacks of using PETSc with GPUs are well

known6

5Andrew J Cleary et al. “Robustness and scalability of algebraic multigrid”. In:

SIAM Journal on Scientific Computing 21.5 (2000), pp. 1886–1908.
6Richard Tran Mills et al. “Toward performance-portable PETSc for

GPU-based exascale systems”. In: Parallel Computing 108 (2021), p. 102831.
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Thank you for your attention



Results for Structured Mesh

2163330 dofs fixed size problem
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Strong scaling test on GPU. Time and iteration vs number of GPUs.

Notice the effect of synchronization overheads



Results for Unstructured Mesh
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Comparison between times and iterations for solving the elliptic system

on different unstructured meshes on GPU vs number of GPUs. U-mesh 3

goes out of memory with 32 and 64 GPUs.
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