Multigrid Preconditioners for the Cardiac Bidomain Model: a Performance Analysis on HPC Architectures

Edoardo Centofanti
Dept. of Mathematics, Università di Pavia, Italy

Joint work with
Simone Scacchi
Dept. of Mathematics, Università degli studi di Milano, Italy
May 16, 2023
IMPDE2023, Jacques-Louis Lions Laboratory, Sorbonne University, Paris

Introduction

- The bidomain cardiac model ${ }^{1}$ is widely used in computational cardiology in order to describe the propagation of the electric potential on the cardiac tissue
- Due to its computational expensiveness, it is important having robust preconditioners in order to solve it numerically
- In this talk we will present the results of tests regarding the application of different Algebraic Multigrid implementations to precondition this problem on multiple CPUs and GPUs

[^0]
The Bidomain Model

- We will consider the Parabolic-Elliptic formulation

On a space domain Ω (intra and extracellular domains overlap) and a time interval $(0, T)$

$$
\begin{cases}\chi C_{m} \frac{\partial v}{\partial t}-\nabla \cdot\left(D_{i} \nabla v\right)+\nabla \cdot\left(D_{i} \nabla u_{e}\right)+\chi l_{\mathrm{ion}}(v, \mathbf{w}, \mathbf{c})=l_{\mathrm{app}}^{i} & \text { in } \Omega \times(0, T), \\ -\nabla \cdot\left(D_{i} \nabla v\right)-\nabla \cdot\left(\left(D_{i}+D_{e}\right) \nabla u_{e}\right)=l_{\mathrm{app}}^{i}+l_{\mathrm{app}}^{e} & \text { in } \Omega \times(0, T), \\ \frac{\partial \mathbf{w}}{\partial t}-\mathbf{R}(v, \mathbf{w})=0 & \text { in } \Omega \times(0, T), \\ \frac{\partial \mathbf{c}}{\partial t}-\mathbf{C}(v, \mathbf{w}, \mathbf{c})=0 & \text { in } \Omega \times(0, T), \\ \mathbf{n}^{\top} D_{i} \nabla\left(v+u_{e}\right)=0 & \text { in } \Omega \times(0, T), \\ \mathbf{n}^{\top}\left(D_{i}+D_{e}\right) \nabla u_{e}+\mathbf{n}^{\top} D_{i} \nabla v=0 & \text { in } \Omega \times(0, T) .\end{cases}
$$

Where v is the transmembrane potential, u_{e} extracellular potential, \mathbf{w}, \mathbf{c} gating and concentration variables related to the ionic model

The Bidomain Model

In our setting the problem is spatially discretized through FEM using Q1 elements and ten Tusscher (TT) model is used as ionic model

$$
\left\{\begin{array}{l}
\chi C_{m} M \frac{\partial \mathbf{v}_{h}}{\partial t}+A_{i} \mathbf{v}_{h}+A_{i} \mathbf{u}_{e, h}+\chi M \mathbf{I}_{\mathrm{ion}}^{h}\left(\mathbf{v}_{h}, \mathbf{w}_{h}, \mathbf{c}_{h}\right)=M \mathbf{I}_{\mathrm{app}}^{i, h} \\
A_{i} \mathbf{v}_{h}+\left(A_{e}+A_{i}\right) \mathbf{u}_{e, h}=M\left(\mathbf{I}_{\mathrm{app}}^{i, h}+\mathbf{I}_{\mathrm{app}}^{e, h}\right)
\end{array}\right.
$$

The Bidomain Model

In our setting the problem is spatially discretized through FEM using Q1 elements and ten Tusscher (TT) model is used as ionic model

$$
\left\{\begin{array}{l}
\chi C_{m} M \frac{\partial \mathbf{v}_{h}}{\partial t}+A_{i} \mathbf{v}_{h}+A_{i} \mathbf{u}_{e, h}+\chi M \mathbf{I}_{\mathrm{ion}}^{h}\left(\mathbf{v}_{h}, \mathbf{w}_{h}, \mathbf{c}_{h}\right)=M \mathbf{I}_{\mathrm{app}}^{i, h} \\
A_{i} \mathbf{v}_{h}+\left(A_{e}+A_{i}\right) \mathbf{u}_{e, h}=M\left(\mathbf{I}_{\mathrm{app}}^{i, h}+\mathbf{I}_{\mathrm{app}}^{e, h}\right)
\end{array}\right.
$$

The Bidomain Model

In our setting the problem is spatially discretized through FEM using Q1 elements and ten Tusscher (TT) model is used as ionic model

$$
\left\{\begin{array}{l}
\chi C_{m} M \frac{\partial \mathbf{v}_{h}}{\partial t}+A_{i} \mathbf{v}_{h}+A_{i} \mathbf{u}_{e, h}+\chi M \mathbf{I}_{\mathrm{ion}}^{h}\left(\mathbf{v}_{h}, \mathbf{w}_{h}, \mathbf{c}_{h}\right)=M \mathbf{I}_{\mathrm{app}}^{i, h} \\
A_{i} \mathbf{v}_{h}+\left(A_{e}+A_{i}\right) \mathbf{u}_{e, h}=M\left(\mathbf{I}_{\mathrm{app}}^{i, h}+\mathbf{I}_{\mathrm{app}}^{e, h}\right)
\end{array}\right.
$$

The Bidomain Model

In our setting the problem is spatially discretized through FEM using Q1 elements and ten Tusscher (TT) model is used as ionic model

$$
\left\{\begin{array}{l}
\chi C_{m} M \frac{\partial \mathbf{v}_{h}}{\partial t}+A_{i} \mathbf{v}_{h}+A_{i} \mathbf{u}_{e, h}+\chi M \mathbf{I}_{\mathrm{ion}}^{h}\left(\mathbf{v}_{h}, \mathbf{w}_{h}, \mathbf{c}_{h}\right)=M \mathbf{I}_{\mathrm{app}}^{i, h} \\
A_{i} \mathbf{v}_{h}+\left(A_{e}+A_{i}\right) \mathbf{u}_{e, h}=M\left(\mathbf{I}_{\mathrm{app}}^{i, h}+\mathbf{I}_{\mathrm{app}}^{e, h}\right)
\end{array}\right.
$$

The Bidomain Model

In our setting the problem is spatially discretized through FEM using Q1 elements and ten Tusscher (TT) model is used as ionic model

$$
\left\{\begin{array}{l}
\chi C_{m} M \frac{\partial \mathbf{v}_{h}}{\partial t}+A_{i} \mathbf{v}_{h}+A_{i} \mathbf{u}_{e, h}+\chi M \mathbf{I}_{\mathrm{ion}}^{h}\left(\mathbf{v}_{h}, \mathbf{w}_{h}, \mathbf{c}_{h}\right)=M \mathbf{I}_{\mathrm{app}}^{i, h} \\
A_{i} \mathbf{v}_{h}+\left(A_{e}+A_{i}\right) \mathbf{u}_{e, h}=M\left(\mathbf{I}_{\mathrm{app}}^{i, h}+\mathbf{I}_{\mathrm{app}}^{e, h}\right)
\end{array}\right.
$$

The Bidomain Model

In our setting the problem is spatially discretized through FEM using Q1 elements and ten Tusscher (TT) model is used as ionic model

$$
\left\{\begin{array}{l}
\chi C_{m} M \frac{\partial \mathbf{v}_{h}}{\partial t}+A_{i} \mathbf{v}_{h}+A_{i} \mathbf{u}_{e, h}+\chi M \mathbf{I}_{\mathrm{ion}}^{h}\left(\mathbf{v}_{h}, \mathbf{w}_{h}, \mathbf{c}_{h}\right)=M \mathbf{I}_{\mathrm{app}}^{i, h} \\
A_{i} \mathbf{v}_{h}+\left(A_{e}+A_{i}\right) \mathbf{u}_{e, h}=M\left(\mathbf{I}_{\mathrm{app}}^{i, h}+\mathbf{I}_{\mathrm{app}}^{e, h}\right)
\end{array}\right.
$$

The Bidomain Model

In our setting the problem is spatially discretized through FEM using Q1 elements and ten Tusscher (TT) model is used as ionic model

$$
\left\{\begin{array}{l}
\chi C_{m} M \frac{\partial \mathbf{v}_{h}}{\partial t}+A_{i} \mathbf{v}_{h}+A_{i} \mathbf{u}_{e, h}+\chi M \mathbf{I}_{\mathrm{ion}}^{h}\left(\mathbf{v}_{h}, \mathbf{w}_{h}, \mathbf{c}_{h}\right)=M \mathbf{I}_{\mathrm{app}}^{i, h} \\
A_{i} \mathbf{v}_{h}+\left(A_{e}+A_{i}\right) \mathbf{u}_{e, h}=M\left(\mathbf{I}_{\mathrm{app}}^{i, h}+\mathbf{I}_{\mathrm{app}}^{e, h}\right)
\end{array}\right.
$$

The Bidomain Model

In our setting the problem is spatially discretized through FEM using Q1 elements and ten Tusscher (TT) model is used as ionic model

$$
\left\{\begin{array}{l}
\chi C_{m} M \frac{\partial \mathbf{v}_{h}}{\partial t}+A_{i} \mathbf{v}_{h}+A_{i} \mathbf{u}_{e, h}+\chi M \mathbf{I}_{\mathrm{ion}}^{h}\left(\mathbf{v}_{h}, \mathbf{w}_{h}, \mathbf{c}_{h}\right)=M \mathbf{I}_{\mathrm{app}}^{i, h} \\
A_{i} \mathbf{v}_{h}+\left(A_{e}+A_{i}\right) \mathbf{u}_{e, h}=M\left(\mathbf{I}_{\mathrm{app}}^{i, h}+\mathbf{I}_{\mathrm{app}}^{e, h}\right)
\end{array}\right.
$$

The Bidomain Model

In our setting the problem is spatially discretized through FEM using Q1 elements and ten Tusscher (TT) model is used as ionic model

$$
\left\{\begin{array}{l}
\chi C_{m} M \frac{\partial \mathbf{v}_{h}}{\partial t}+A_{i} \mathbf{v}_{h}+A_{i} \mathbf{u}_{e, h}+\chi M \mathbf{I}_{\mathrm{ion}}^{h}\left(\mathbf{v}_{h}, \mathbf{w}_{h}, \mathbf{c}_{h}\right)=M \mathbf{I}_{\mathrm{app}}^{i, h} \\
A_{i} \mathbf{v}_{h}+\left(A_{e}+A_{i}\right) \mathbf{u}_{e, h}=M\left(\mathbf{I}_{\mathrm{app}}^{i, h}+\mathbf{I}_{\mathrm{app}}^{e, h}\right)
\end{array}\right.
$$

The Bidomain Model

In our setting the problem is spatially discretized through FEM using Q1 elements and ten Tusscher (TT) model is used as ionic model

$$
\left\{\begin{array}{l}
\chi C_{m} M \frac{\partial \mathbf{v}_{h}}{\partial t}+A_{i} \mathbf{v}_{h}+A_{i} \mathbf{u}_{e, h}+\chi M \mathbf{I}_{\mathrm{ion}}^{h}\left(\mathbf{v}_{h}, \mathbf{w}_{h}, \mathbf{c}_{h}\right)=M \mathbf{I}_{\mathrm{app}}^{i, h} \\
A_{i} \mathbf{v}_{h}+\left(A_{e}+A_{i}\right) \mathbf{u}_{e, h}=M\left(\mathbf{I}_{\mathrm{app}}^{i, h}+\mathbf{I}_{\mathrm{app}}^{e, h}\right)
\end{array}\right.
$$

The Bidomain Model

In our setting the problem is spatially discretized through FEM using Q1 elements and ten Tusscher (TT) model is used as ionic model

$$
\left\{\begin{array}{l}
\chi C_{m} M \frac{\partial \mathbf{v}_{h}}{\partial t}+A_{i} \mathbf{v}_{h}+A_{i} \mathbf{u}_{e, h}+\chi M \mathbf{I}_{\mathrm{ion}}^{h}\left(\mathbf{v}_{h}, \mathbf{w}_{h}, \mathbf{c}_{h}\right)=M \mathbf{I}_{\mathrm{app}}^{i, h} \\
A_{i} \mathbf{v}_{h}+\left(A_{e}+A_{i}\right) \mathbf{u}_{e, h}=M\left(\mathbf{I}_{\mathrm{app}}^{i, h}+\mathbf{I}_{\mathrm{app}}^{e, h}\right)
\end{array}\right.
$$

The Bidomain Model

In our setting the problem is spatially discretized through FEM using Q1 elements and ten Tusscher (TT) model is used as ionic model

$$
\left\{\begin{array}{l}
\chi C_{m} M \frac{\partial \mathbf{v}_{h}}{\partial t}+A_{i} \mathbf{v}_{h}+A_{i} \mathbf{u}_{e, h}+\chi M \mathbf{I}_{\mathrm{ion}}^{h}\left(\mathbf{v}_{h}, \mathbf{w}_{h}, \mathbf{c}_{h}\right)=M \mathbf{I}_{\mathrm{app}}^{i, h} \\
A_{i} \mathbf{v}_{h}+\left(A_{e}+A_{i}\right) \mathbf{u}_{e, h}=M\left(\mathbf{I}_{\mathrm{app}}^{i, h}+\mathbf{I}_{\mathrm{app}}^{e, h}\right)
\end{array}\right.
$$

The Bidomain Model

In our setting the problem is spatially discretized through FEM using Q1 elements and ten Tusscher (TT) model is used as ionic model

$$
\left\{\begin{array}{l}
\chi C_{m} M \frac{\partial \mathbf{v}_{h}}{\partial t}+A_{i} \mathbf{v}_{h}+A_{i} \mathbf{u}_{e, h}+\chi M \mathbf{I}_{\mathrm{ion}}^{h}\left(\mathbf{v}_{h}, \mathbf{w}_{h}, \mathbf{c}_{h}\right)=M \mathbf{I}_{\mathrm{app}}^{i, h} \\
A_{i} \mathbf{v}_{h}+\left(A_{e}+A_{i}\right) \mathbf{u}_{e, h}=M\left(\mathbf{I}_{\mathrm{app}}^{i, h}+\mathbf{I}_{\mathrm{app}}^{e, h}\right)
\end{array}\right.
$$

Unstructured mesh

We have solved the same problem presented before on an unstructured mesh representing a ventricle, with 3 different resolutions

Unstructured mesh

We have solved the same problem presented before on an unstructured mesh representing a ventricle, with 3 different resolutions

Unstructured mesh

We have solved the same problem presented before on an unstructured mesh representing a ventricle, with 3 different resolutions

Unstructured mesh

We have solved the same problem presented before on an unstructured mesh representing a ventricle, with 3 different resolutions

Unstructured mesh

We have solved the same problem presented before on an unstructured mesh representing a ventricle, with 3 different resolutions

Unstructured mesh

We have solved the same problem presented before on an unstructured mesh representing a ventricle, with 3 different resolutions

Unstructured mesh

We have solved the same problem presented before on an unstructured mesh representing a ventricle, with 3 different resolutions

Unstructured mesh

We have solved the same problem presented before on an unstructured mesh representing a ventricle, with 3 different resolutions

Unstructured mesh

We have solved the same problem presented before on an unstructured mesh representing a ventricle, with 3 different resolutions

Unstructured mesh

We have solved the same problem presented before on an unstructured mesh representing a ventricle, with 3 different resolutions

Unstructured mesh

We have solved the same problem presented before on an unstructured mesh representing a ventricle, with 3 different resolutions

Unstructured mesh

We have solved the same problem presented before on an unstructured mesh representing a ventricle, with 3 different resolutions

Preconditioned Conjugate Gradient (PCG)

```
Algorithm 1 PCG
    \(r_{0}=b-A x_{0}\)
    \(z_{0}=M^{-1} r_{0} \quad \triangleright\) Preconditioning step
    \(p_{0}=z_{0}\)
    \(k=0\)
    for \(k=0 ; k<\) maxiter; \(k++\) do
        \(\alpha_{k}=\frac{r_{k}^{\prime} r_{k}}{p_{k}^{\prime} A p_{k}}\)
        \(x_{k}=x_{k}+\alpha_{k} p_{k}\)
        \(r_{k}=r_{k}-\alpha_{k} A p_{k}\)
        if \(r_{k}\) is sufficiently small then
        exit loop
        end if
        \(z_{k}=M^{-1} r_{k} \quad \triangleright\) Preconditioning step
        \(\beta_{k}=\frac{r_{k}^{\prime} z_{k}}{r_{k}^{\prime} z_{k}}\)
        \(p_{k}=z_{k}+\beta_{k} p_{k}\)
    end for
    return \(x_{k}\)
```


Algebraic Multigrid (AMG)

In this work used for preconditioning CG for the elliptic equation

High frequency components of the error are removed by relaxation, smooth components by grid correction

AMG Setup phase

Algorithm 2 AMG setup phase

$$
\text { for } k=1 ; k<M ; k++ \text { do }
$$

Partition Ω^{k} into disjoint sets C^{k} and F^{k}.
Set $\Omega^{k+1}=C^{k}$.
Define interpolation P^{k}.
Define restriction R^{k} (often $\left.R^{k}=\left(P^{k}\right)^{\top}\right)$. $A^{k+1} \leftarrow R^{k} A^{k} P^{k}$
Set up smoother S^{k}.
end for

AMG V-cycle algorithm

Algorithm $3 \mathrm{MGV}\left(A^{k}, R^{k}, P^{k}, S^{k}, u^{k}, f^{k}\right)$
if $k==M$ then solve $A^{M} u^{M}=f^{M}$ with a direct solver.
else
apply the smoother $S^{k} \mu_{1}$ times to $A^{k} u^{k}=f^{k}$.
$r^{k} \leftarrow f^{k}-A^{k} u^{k} \quad \triangleright$ Coarse grid correction step $r^{k+1} \leftarrow R^{k} r^{k}$
apply $\operatorname{MGV}\left(A^{k+1}, R^{k+1}, P^{k+1}, S^{k+1}, e^{k+1}, r^{k+1}\right) \triangleright$ Recursion $e^{k} \leftarrow P^{k} e^{k+1} \quad \triangleright$ Interpolation step $u^{k} \leftarrow u^{k}+e^{k} \quad \triangleright$ Correction apply the smoother $S^{k} \mu_{2}$ times to $A^{k} u^{k}=f^{k}$.

end if

Algebraic Multigrid (AMG)

Assumption: Smooth error \longrightarrow small residual

$$
\begin{aligned}
& A e \approx 0 \\
& \sum_{j=1}^{n} a_{i j} e_{j} \approx 0 \Longrightarrow a_{i i} e_{i} \approx-\sum_{j \neq i} a_{i j} e_{j}
\end{aligned}
$$

Assumption: for any $a_{i j}$ sufficiently small, we can replace e_{j} with e_{i} \Longrightarrow This motivates the definition of thresholds for coarsening

implementations

PETSc (version 3.17) with

EPETSC

- gamg, PETSc native implementation
- BoomerAMG, high performance parallel implementation provided by the Hypre library ${ }^{2}$ (partially wrapped in PETSc)

[^1]
Threshold (gamg)

Modified Maximal Independent Set (MIS) algorithm³

A graph is built from the nodes i, j of the elements $a_{i, j}$ of the matrix A and a weigth $w_{i j}=\frac{\left|a_{i j}\right|}{\sqrt{\left|a_{i j} a_{j j}\right|}}$ is attributed to each edge (i, j). A threshold on the edge weigth is thus set such that at each coarsening step all the edges with weigth less that the threshold are cut.
${ }^{3}$ Mark F Adams. "Algebraic multigrid methods for constrained linear systems with applications to contact problems in solid mechanics". In: Numerical linear algebra with applications 11.2-3 (2004), pp. 141-153.

Strong Threshold (Hypre)

Hybrid-MIS (HMIS) algorithm ${ }^{4}$

A is explored and for each row the coarsening nodes are chosen between the ones satisfying the condition

$$
\begin{equation*}
\left|a_{i, j}\right| \geq \alpha \max _{k \neq i}\left|a_{i, k}\right| \tag{1}
\end{equation*}
$$

with α called strong threshold parameter

[^2]
PETSc Setup

gamg:

- solver: CG
- V cycle
- smoother: Chebyshev
- same smoother post and pre coarse grid correction
- Coarsening: Maximal Independent Set (MIS)
- Threshold: from 0.0 (default) up to 0.07
- Number of levels: 2

Hypre:

- solver: CG
- V cycle
- smoother: Hybrid Gauss-Seidel
- same smoother post and pre coarse grid correction
- Coarsening: Hybrid Modified Independent set (HMIS)
- Strong threshold: from 0.25 (default) up to 0.8
- Number of levels: 2

Architecture

MARCONI100 (CINECA)

- 980 compute nodes with:
- 2×16 cores IBM POWER9 AC922 at 3.1 GHz
- $4 \times$ NVIDIA Volta V100 GPUs, Nvlink 2.0, 16GB
- 256 GB RAM
- Disk Space: 8PB GPFS storage

Tuning Threshold for Structured Mesh

32768 dofs

Results for different threshold parameters for Hypre GPU

Threshold	It mean parab	$\mathrm{It}_{\text {mean }}$ ellip	$T_{\text {memb, mean }}(\mathrm{s})$	$T_{\text {parab, mean }}(\mathrm{s})$	$T_{\text {ellip, mean }}(\mathrm{s})$
0.25	25.22	23.30	$8.9 \mathrm{E}-03$	$1.4 \mathrm{E}-02$	$9.6 \mathrm{E}-02$
0.3	25.22	19.29	$8.9 \mathrm{E}-03$	$1.4 \mathrm{E}-02$	$7.4 \mathrm{E}-02$
0.4	25.22	13.92	$8.9 \mathrm{E}-03$	$1.4 \mathrm{E}-02$	$5.6 \mathrm{E}-02$
0.5	25.22	22.81	$8.9 \mathrm{E}-03$	$1.4 \mathrm{E}-02$	0.10
0.6	25.22	24.57	$8.9 \mathrm{E}-03$	$1.5 \mathrm{E}-02$	0.11
0.7	25.22	32.11	$8.9 \mathrm{E}-03$	$1.4 \mathrm{E}-02$	0.15

Tuning Threshold for Structured Mesh

32768 dofs

Best results for different implementations

	Threshold	It mean parab	$\mathrm{It}_{\text {mean }}$ ellip	$T_{\text {memb, mean }}(\mathrm{s})$	$T_{\text {parab, mean }}(\mathrm{s})$	$T_{\text {ellip, mean }}(\mathrm{s})$
Hypre (GPU)	0.4	25.22	13.92	$8.9 \mathrm{E}-03$	$1.4 \mathrm{E}-02$	$5.6 \mathrm{E}-02$
Hypre (CPU)	0.5	3.00	6.27	$9.4 \mathrm{E}-03$	$2.0 \mathrm{E}-03$	$2.4 \mathrm{E}-02$
gamg (CPU)	0.07	3.00	9.64	$8.8 \mathrm{E}-03$	$2.1 \mathrm{E}-03$	0.07

Results for Structured Mesh

2163330 dofs fixed size problem

Iterations for elliptic solvers on CPU Time for elliptic and parabolic solvers on CPU

Strong scaling test on CPU. Time and iterations vs number of CPUs.

Results for Structured Mesh

9826 dofs for each GPU

Weak scaling test on GPU (16 nodes) for the structured mesh.

Results for Structured Mesh

9826 dofs for each CPU

Weak scaling test on CPU (16 nodes) for the structured mesh.

Unstructured mesh

Name	Physical DOFs	Elements
U-mesh 1	35725	30108
U-mesh 2	258415	240864
U-mesh 3	1987285	1926912

Tuning Threshold for Unstructured Mesh

35725 dofs - U-Mesh 1
Best results for different implementations

	Threshold	$I t_{\text {mean }}$ parab	$I t_{\text {mean }}$ ellip	$T_{\text {memb, mean }}(\mathrm{s})$	$T_{\text {parab, mean }}(\mathrm{s})$	$T_{\text {ellip, mean }}(\mathrm{s})$
Hypre (GPU)	0.6	40.28	5.41	$1.65 \mathrm{e}-04$	$2.51 \mathrm{e}-02$	$4.46 \mathrm{E}-02$
Hypre (CPU)	0.5	5.12	3.06	$1.09 \mathrm{E}-02$	$1.3 \mathrm{E}-03$	$3.0 \mathrm{E}-02$
gamg (CPU)	0.07	5.12	11.77	$2.8 \mathrm{E}-03$	$1.3 \mathrm{E}-03$	$4.3 \mathrm{E}-02$

Results for Unstructured Mesh

Iterations for elliptic solvers on CPU

Time for elliptic solvers on CPU

Comparison between times and iterations for solving the elliptic system on different unstructured meshes with Hypre on CPU vs number of GPUs

Results for Unstructured Mesh

Iterations for elliptic solvers on CPU

Time for elliptic solvers on CPU

Comparison between times and iterations for solving the elliptic system on different unstructured meshes with gamg on CPU vs number of CPUs

Results for Unstructured Mesh

Iterations for elliptic solvers on CPU

Time for elliptic solvers on CPU

Comparison between times and iterations for solving the elliptic system on U-mesh 3 with gamg and Hypre on CPU

Results

Best results on CPU and GPU for the structured mesh (2163330 dofs)

Num GPU	It mean parab	$\mathrm{It}_{\text {mean }}$ ellip	$T_{\text {memb, mean }}(\mathrm{s})$	$T_{\text {parab, mean }}(\mathrm{s})$	$T_{\text {ellip, mean }}(\mathrm{s})$
$4 \mathrm{GPU}(\mathrm{h})$	13.9	5.7	$8.4 \mathrm{E}-04$	$1.6 \mathrm{E}-02$	$5.5 \mathrm{E}-02$
$128 \mathrm{CPU}(\mathrm{h})$	5.0	9.7	$1.8 \mathrm{E}-02$	$9.2 \mathrm{E}-03$	$2.0 \mathrm{E}-01$
$256 \mathrm{CPU}(\mathrm{g})$	5.0	10.3	$9.4 \mathrm{E}-03$	$5.1 \mathrm{E}-03$	$9.1 \mathrm{E}-01$

h stays for Hypre, g for gamg

Results

Best results on CPU and GPU for the unstructured mesh (U-Mesh 3, 1987285 dofs)

Num GPU	$\mathrm{It}_{\text {mean }}$ parab	$\mathrm{It}_{\text {mean }}$ ellip	$T_{\text {memb, mean }}(\mathrm{s})$	$T_{\text {parab, mean }}(\mathrm{s})$	$T_{\text {ellip, mean }}(\mathrm{s})$
$8 \mathrm{GPU}(\mathrm{h})$	57.7	8.4	$1.2 \mathrm{E}-02$	$1.8 \mathrm{E}-01$	$3.3 \mathrm{E}-01$
$512 \mathrm{CPU}(\mathrm{h})$	27.7	6.1	$1.2 \mathrm{E}-02$	$7.5 \mathrm{E}-02$	1.2
$128 \mathrm{CPU}(\mathrm{g})$	27.7	1.8	$9.8 \mathrm{E}-04$	$4.9 \mathrm{E}-02$	1.1

h stays for Hypre, g for gamg

Conclusion

- On CPU we have confirmed the scalability properties of AMG ${ }^{5}$, both on structured and unstructured mesh
- On GPU we obtained better performance with respect to CPU
- Benefits and drawbacks of using PETSc with GPUs are well known ${ }^{6}$

[^3]Thank you for your attention

Results for Structured Mesh

2163330 dofs fixed size problem

Elliptic iterations vs GPU
Solution Time vs GPU

Strong scaling test on GPU. Time and iteration vs number of GPUs.
Notice the effect of synchronization overheads

Results for Unstructured Mesh

Iterations for elliptic solvers on GPU

Time for elliptic solvers on GPU

Comparison between times and iterations for solving the elliptic system on different unstructured meshes on GPU vs number of GPUs. U-mesh 3 goes out of memory with 32 and 64 GPUs.

[^0]: ${ }^{1}$ P. Colli Franzone, L.F. Pavarino, and S. Scacchi. Mathematical Cardiac Electrophysiology. Reading, Mass.: Springer Cham, 2014.

[^1]: ${ }^{2}$ Robert D. Falgout and Ulrike Meier Yang. "hypre: A Library of High Performance Preconditioners". In: Computational Science - ICCS 2002. Ed. by Peter M. A. Sloot et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 632-641. ISBN: 978-3-540-47789-1.

[^2]: ${ }^{4}$ Hans De Sterck, Ulrike Meier Yang, and Jeffrey J Heys. "Reducing complexity in parallel algebraic multigrid preconditioners". In: SIAM Journal on Matrix Analysis and Applications 27.4 (2006), pp. 1019-1039.

[^3]: ${ }^{5}$ Andrew J Cleary et al. "Robustness and scalability of algebraic multigrid". In: SIAM Journal on Scientific Computing 21.5 (2000), pp. 1886-1908.
 ${ }^{6}$ Richard Tran Mills et al. "Toward performance-portable PETSc for GPU-based exascale systems". In: Parallel Computing 108 (2021), p. 102831.

