

A Mini-course on Multigrid Method: Introduction

Hardik Kothari

Euler Institute, Università della Svizzera italiana, Switzerland

May 16, 2023 Research school on Iterative Methods for Partial Differential Equations Paris, France

Outline

1 Overview

2 Model problem

3 Basic iterative methods

4 Smoothers

- 5 Two-grid method
- 6 Multigrid method
- Numerical Results
- Outlook and extensions

э

• • = •

Motivation

- Effective in solving large-scale problems from applied mathematics, engineering, physics, computational sciences
- More of a framework rather than a solution method, hence it requires a detailed knowledge of the algorithm for effective usage
- Properties of multigrid method
 - optimal time complexity
 - optimal memory complexity
 - level independent convergence
 - stable asymptotic convergence rates
- Included in libraries for solving numerical solutions of PDEs, e.g., PETSc, Trilinos, etc.

イロト イボト イヨト イヨト

Overview

Historical developments

- Highly effective iterative numerical framework for solving linear system of equations arising from discretization of the partial differential equations (PDEs).
- Historical developments
 - Federenko (1964) multigrid algorithm for standard 5-point stencil for solving Laplace problem
 - Bachvalov (1966) generalization of the MG for central-difference scheme for linear elliptic PDE with variable smooth coefficients
 - Theoretical work estimates were pessimistic and method was not put in practice
 - First practical results were reported by Brandt, outlined the main principles and demonstrated practical utility of the method (1973, 1977)
 - The method was also discovered independently by Hackbusch (1978, 1980, 1981), who laid mathematical foundations
 - numerous contributions since then...

イロト イロト イヨト イヨト

Overview

Main monographs

- A Multigrid Tutorial, by W. L. Briggs, Van E. Henson, S. F. McCormick (1987, 2000)
- Multi-Grid Methods and Applications, by W. Hackbusch (1985)
- An Introduction to Multigrid Methods, by P. Wesseling (1992)
- Multigrid Methods for Finite Elements, by V. V. Shaidurov (1995)
- Multigrid, by U. Trottenberg, C. W. Ooserlee, A. Schüler (2001)

イロト イロト イヨト イヨト

Overview

Chapters in other monographs

- Iterative methods for sparse linear systems Chapter 13, by Y. Saad (2003)
- Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics Chapter 5, by D. Braess (2007)
- The mathematical theory of Finite Element methods Chapter 6, by S. C. Brenner, L. R. Scott (2008)
- Adaptive Numerical Solutions of PDEs Chapter 5, by P. Deuflhard, M. Weiser (2012)
- Finite Difference and Spectral Methods for Ordinary and Partial differential equations Chapter 9, by *L. N. Trefethen* (1996)

- An effective iterative numerical method for solving linear system of equations arising from discretization of the partial differential equations.
- An optimal solution method
 - convergence rate of the method is independent of problem size
 - iteration till convergence do not grow with increasing problem size
 - only arithmetic operations grow with problem size
- It employs hierarchy of meshes with different resolutions
- Essential components:
 - Smoothers of each level
 - Transfer operators
 - A direct solver on the coarsest level

▶ < ∃ >

Model problem

Table of Contents

1) Overview

2 Model problem

Basic iterative methods

4 Smoothers

- 5 Two-grid method
- 6 Multigrid method
- 7 Numerical Results
- 8 Outlook and extensions

Model problem

A model problem

Strong form:

$$-\nabla^2 u = f, \qquad \text{in } \Omega,$$
$$u = 0, \qquad \text{on } \partial \Omega,$$

_

where $f \in L^2(\Omega)$ regular, $\partial \Omega$ is Lipschitz

• Weak form: Find $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f \, v \, dx, \qquad \forall \, v \in H_0^1(\Omega),$$
$$a(u, v) = F(v), \qquad \forall \, v \in H_0^1(\Omega).$$

- Triangulation of Ω with elements
- Choosing basis $\{\phi_i\}_{i=1}^N$, where N = number of nodes
- Discretized weak form can be given as a linear system

$$A\mathbf{x} = \mathbf{b}, \qquad \text{where } \begin{cases} A_{ij} = \int_{\Omega} \nabla \phi_i \cdot \nabla \phi_j \, dx \\ b_i = \int_{\Omega} f \cdot \phi_i \, dx \end{cases}$$

Model problem

Matrix stencil and Eigenvalues/Eigenvectors

1D problem

$$A = \frac{1}{h^2} \begin{bmatrix} 2 & -1 & & \\ -1 & 2 & -1 & & \\ & -1 & 2 & -1 & \\ & & \ddots & \ddots & \ddots \\ & & & -1 & 2 \end{bmatrix}$$

- $A \in \mathbb{R}^{n \times n}$ symmetric positive definite
- Diagonally dominant, i.e.,

$$|a_{ii}| \ge \sum_{j \ne i} |a_{ij}|$$
 for $i = 1, 2, \dots, n$

■ Eigenvalues in range [0,4]

$$\lambda_k = 4\sin^2\left(\frac{k\pi}{2n}\right)$$

Eigenvectors are Fourier modes

$$(\boldsymbol{v}_k)_j = \sin\left(\frac{jk\pi}{n}\right)$$

▶ < ∃ ▶</p>

Table of Contents

1 Overview

2 Model problem

4 Smoothers

- 5 Two-grid method
- 6 Multigrid method
- 7 Numerical Results
- Outlook and extensions

Iterative methods based on Matrix splitting

■ Solve linear system of equation:

$$Ax = b$$

Split the matrix *A* to construct iterative method

$$A = M - N$$
$$Mx = Nx + b$$

■ Iterative method can be written as

$$Mx^{(k+1)} = Nx^{(k)} + b$$

$$x^{(k+1)} = M^{-1}(Nx^{(k)} + b)$$

$$x^{(k+1)} = M^{-1}((M - A)x^{(k)} + b)$$

$$x^{(k+1)} = x^{(k)} + M^{-1}(b - Ax^{(k)})$$

■ Alternatively, we can also write

$$x^{(k+1)} = (I - M^{-1}A)x^{(k)} + M^{-1}b$$
$$x^{(k+1)} = Gx^{(k)} + d$$

Fixed point iteration

Given an initial guess $x^{(0)}$, an iterative method can be given as

$$x^{(k+1)} = Gx^{(k)} + d, \qquad k = 0, 1, 2, \dots$$

where $G = I - M^{-1}A$ and $d = M^{-1}b$

• The solution x^* of the linear system Ax = b is a fixed point of above iteration, i.e.,

$$x^* = Gx^* + d$$

• Error for a given iterate $x^{(k)}$

$$\boldsymbol{e}^{(k)} = \boldsymbol{x}^* - \boldsymbol{x}^{(k)}$$

• Residual at a given iterate $x^{(k)}$

$$\boldsymbol{r}^{(k)} = \boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}^{(k)}$$

Error equation

$$r^{(k)} = b - Ax^{(k)}$$
$$r^{(k)} = Ax^* - Ax^{(k)}$$
$$r^{(k)} = Ae^{(k)}$$

Error propagation

Utilizing the fixed point and iterative method

$$x^{(k+1)} - x^* = G(x^{(k)} - x^*)$$

$$x^{(k+1)} - x^* = G^2(x^{(k-1)} - x^*)$$

:

$$x^{(k+1)} - x^* = G^{k+1}(x^{(0)} - x^*)$$

$$e^{(k+1)} = G^{k+1}e^{(0)}$$

Theroem:

A fixed-point iterative method is called convergent, if for an arbitrary $\mathbf{x}^{(0)}$, we have $\lim_{k\to\infty} \mathbf{x}^{(k)} = \mathbf{x}^*$. We can equivalently write,

$$\lim_{k\to\infty} \boldsymbol{G}^k = 0.$$

Iteration error can be bounded by

$$\|e^{(k)}\| \leq \|G\|^k \|e^{(0)}\|$$

I I I I

Fundamental theorem of iterative method

For an iteration matrix

$$\boldsymbol{G} = \boldsymbol{I} - \boldsymbol{M}^{-1}\boldsymbol{A}$$

- Iterative method is convergent if $\lim_{k\to\infty} G^k = 0$ if and only if $\rho(G) < 1$ or ||G|| < 1
- $\rho(G)$ denotes spectral radius, i.e., $\rho(G) = \max\{|\lambda_1(G)|, |\lambda_2(G)|, \dots, |\lambda_n(G)|\}$

Speed of convergence:

Using the bounds on iteration error

$$\frac{|\boldsymbol{e}^{(k)}\|}{|\boldsymbol{e}^{(0)}||} \leq \|\boldsymbol{G}^{k}\| \leq \|\boldsymbol{G}\|^{k} \leq 10^{-d}$$

Using spectral radius

$$\rho(\mathbf{G}^{k}) \leq 10^{-d}$$
$$\log(\rho(\mathbf{G}^{k})) \leq \log(10^{-d})$$
$$k \log(\rho(\mathbf{G})) \leq -d$$
$$k \geq \frac{d}{-\log(\rho(\mathbf{G}))},$$

where convergence rate = $-\log(\rho(G))$

Classical iterative methods

Richardson method:

$$M = \omega I, \quad N = \omega I - A$$
 $x^{(k+1)} = x^{(k)} + \omega (b - Ax^{(k)}), \quad k = 0, 1, 2, ...$

Jacobi method:

$$M = D$$
, $N = (D - A)$ $x^{(k+1)} = x^{(k)} + D^{-1}(b - Ax^{(k)})$, $k = 0, 1, 2, ...$

Damped-Jacobi method:

$$M = \omega D$$
, $N = \omega D - A$ $x^{(k+1)} = x^{(k)} + \omega D^{-1}(b - Ax^{(k)})$, $k = 0, 1, 2, ...$

■ Gauss-Seidel method:

$$M = D + L$$
, $N = D + L - A$ $x^{(k+1)} = x^{(k)} + (D + L)^{-1}(b - Ax^{(k)})$, $k = 0, 1, 2, ...$

Error v/s iterations

Observations:

- Iterative methods are very slow to converge
- Error reduced rapidly in few first iterations, but then it stagnates

Table of Contents

Overview

2 Model problem

Basic iterative methods

4 Smoothers

- Two-grid method
- 6 Multigrid method
- 7 Numerical Results
- B Outlook and extensions

Eigenvectors of A

$$(\mathbf{v}_k)_j = \sin\left(\frac{jk\pi}{n}\right)$$

Convergence of different error components

damped-Jacobi method with $\omega = \frac{2}{3}$

Error reduces rapidly for high frequency component

Convergence analysis for damped Jacobi method

Iteration matrix

$$\boldsymbol{G}_{\omega J} = \boldsymbol{I} - \boldsymbol{\omega} \boldsymbol{D}^{-1} \boldsymbol{A}$$

• Eigenvalues of the iteration matrix

$$\lambda(\boldsymbol{G}_{\omega J}) = 1 - \frac{\omega}{2}\lambda(\boldsymbol{A})$$

- Recall: $\lambda_i(\mathbf{A}) = 4\sin^2\left(\frac{i\pi}{2n}\right)$ $\lambda_i(\mathbf{G}_{\omega J}) = 1 - \frac{\omega}{2} 4\sin^2\left(\frac{i\pi}{2n}\right)$
- Convergence rate:

$$\rho(\boldsymbol{G}_{\omega J}) = \lambda_1 = 1 - 2\omega \sin^2\left(\frac{h\pi}{2}\right) = 1 - \mathcal{O}(h^2) < 1$$

■ Eigenvectors of *G* and *A* are same for Jacobi/damped-Jacobi method, which is not true for Gauss-Seidel method, as Gauss-Seidel mixes the eigenvectors of *A*

▶ < ∃ ▶</p>

Expanding on eigenvalues of iteration matrix

Expanding initial error using eigenvectors

$$\boldsymbol{e}^{(0)} = \sum_{i=1}^n c_i \boldsymbol{v}_i$$

• After v iterations

$$e^{(v)} = Ge^{(v-1)}$$

Error equation for damped Jacobi iteration

$$\boldsymbol{e}^{(\nu)} = (\boldsymbol{I} - \boldsymbol{\omega} \boldsymbol{D}^{-1} \boldsymbol{A}) \boldsymbol{e}^{(\nu-1)} = \boldsymbol{G}_{\boldsymbol{\omega} \boldsymbol{J}}^{\nu} \boldsymbol{e}^{(0)}$$

• For v iterations, we get

$$\boldsymbol{G}_{\omega J}^{\nu} \boldsymbol{e}^{(0)} = \sum_{i=1}^{n} c_i \boldsymbol{G}_{\omega J}^{\nu} \boldsymbol{\nu}_i$$
$$= \sum_{i=1}^{n} c_i \lambda_i^{\nu} \boldsymbol{\nu}_i$$

• The i^{th} mode of the error is reduced by magnitude of λ_i at each iteration

4 D F 4 7 F 4

医子宫下

Relaxation smooths different eigenmodes

- Eigenvalues of iteration matrix: $\lambda_i(\mathbf{G}_{\omega J}) = 1 2\omega \sin^2\left(\frac{i\pi}{2n}\right)$
- Which value of ω provides best smoothing of high frequency error?

Smoothing factor

The **smoothing factor** of a relaxation method is the largest absolute value of the eigenvalues in the upper half of the spectrum of the iteration matrix:

smoothing factor = max{ $|\lambda_{n/2}(G)|, |\lambda_{n/2+1}(G)|, |\lambda_{n/2+2}(G)|, \dots, |\lambda_n(G)|$ }

Smoothing factors for damped-Jacobi method:

• for $\omega = 2/3$ • for $\omega = 1/2$ • for $\omega = 1/2$ • for $\omega = 1/3$ • for $\omega = 1$

$$|\lambda_{n/2}(\boldsymbol{G}_{\omega J})| = 0 \quad |\lambda_n(\boldsymbol{G}_{\omega J})| = 1$$

■ Jacobi is not a smoother, but damped-Jacobi is a smoother

- 日本 - 御本 - 日本 - 日本 - 日本

Towards projection method

Observation:

- Classical iterative schemes have **smoothing property**,
- The oscillatory modes of the error are damped very quickly, the smooth modes are damped very slowly

Idea:

• Do v smoothing iterations to improve on the initial guess

$$\boldsymbol{x}^{(k)} = \boldsymbol{S}^{\nu}(\boldsymbol{x}^{(k-1)})$$

• Look for an update δx that provides the "best" improvement for iterate

$$\boldsymbol{x}^* = \boldsymbol{x}^{(k)} + \delta \boldsymbol{x}$$

• Construct $\delta x \approx e^{(k)}$ by least square minimization on a smaller space V

$$\min_{\delta \boldsymbol{x} \in \text{span}\{\boldsymbol{v}\}} \|\delta \boldsymbol{x} - \boldsymbol{e}^{(k)}\|$$

• Then $\delta x = Vw$

$$\boldsymbol{V}^{\top}\boldsymbol{V}\boldsymbol{w} = \boldsymbol{V}^{\top}\boldsymbol{e}^{(k)}$$

Update from the projection method

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \boldsymbol{V}(\boldsymbol{V}^{\top}\boldsymbol{V})^{-1}\boldsymbol{V}^{\top}\boldsymbol{e}^{(k)}$$

A-orthogonal projection

- Instead of standard Euclidean norm, we can employ A-norm
- \blacksquare Thus employing A-orthogonal projection onto the range of V
- Construct $\delta x \approx e^{(k)}$ by minimization in A-norm

$$\min_{\delta \boldsymbol{x} \in \text{span}\{\boldsymbol{V}\}} \|\delta \boldsymbol{x} - \boldsymbol{e}^{(k)}\|_{A}$$

• Then $\delta x = Vw$

$$\boldsymbol{V}^{\top}\boldsymbol{A}\boldsymbol{V}\boldsymbol{w} = \boldsymbol{V}^{\top}\boldsymbol{A}\boldsymbol{e}^{(k)}$$

■ Update from the projection method

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{V}(\mathbf{V}^{\mathsf{T}}\mathbf{A}\mathbf{V})^{-1}\mathbf{V}^{\mathsf{T}}\mathbf{A}\mathbf{e}^{(k)}$$
$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{V}(\mathbf{V}^{\mathsf{T}}\mathbf{A}\mathbf{V})^{-1}\mathbf{V}^{\mathsf{T}}\mathbf{r}^{(k)}$$

Table of Contents

1 Overview

2 Model problem

Basic iterative methods

4 Smoothers

- 6 Multigrid method
- 7 Numerical Results
- Outlook and extensions

Coarse grids

- Smooth error modes on a fine grid appear oscillatory on a coarse grid
- Thus, smoothing iteration on coarse grid can damp the oscillatory errors
- Relaxation on coarse grid is much cheaper, as the mesh size grows with the coarsening factor of $\frac{1}{2}$
- Relaxation on the coarse grid has better convergence rate

$$\rho(\boldsymbol{G}) = 1 - \mathcal{O}(4h^2)$$

■ The A-orthogonal projection property ensure that for a given subspace *V*, we get optimal coarse-grid correction

Smooth error on coarse grid

< D > < A

ト 4 王

Coarse modes

■ For $k \in [1, n/2]$ the k^{th} mode is preserved on the coarse grid

$$(\boldsymbol{v}_k^h)_{2j} = \sin \frac{jk\pi}{n/2} = \sin \frac{2jk\pi}{n} = (\boldsymbol{v}_k^{2h})_j$$

■ For $k \in (n/2, n]$ the k^{th} mode is invisible on the coarse grid (Aliasing)

$$(\mathbf{v}_k^h)_{2j} = \sin \frac{2jk\pi}{n} = -\sin \frac{2j(n-k)\pi}{n}$$
$$= -\sin \frac{j(n-k)\pi}{n/2} = -(\mathbf{v}_{n-k}^{2h})_j$$

It is necessary to damp the oscillating error modes on fine grid before a problem on coarse grid is considered. Otherwise, one would get additional smooth error modes on the coarser grid.

Incorporating coarse grid

Recall: Projection iteration

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \boldsymbol{V}(\boldsymbol{V}^{\top}\boldsymbol{A}\boldsymbol{V})^{-1}\boldsymbol{V}^{\top}\boldsymbol{r}^{(k)}$$

Questions:

- How to approximate *V* to transfer information between a fine level and a coarse level?
- How to solve the problem on coarse space?
- Which problem do we solve on coarse grid?

Prolongation operator

- Construct a prolongation operator $\boldsymbol{P}: \Omega_H \to \Omega_h$
- We employ linear interpolation as a prolongation operator: the simplest approach!

- Prolongation gives the best results, if the error on the fine grid is smooth
- Hence, it is an appropriate complement to the smoother which works most efficiently if the error is oscillating
- Prolongation operator

$$P = \begin{bmatrix} 1 & & & \\ 1/2 & 1/2 & & \\ & 1 & & \\ & 1/2 & 1/2 & \\ & & \ddots & \\ & & & \ddots & \\ & & & \ddots & 1/2 \\ & & & & 1 \end{bmatrix}$$

Restriction operators

- Construct a restriction operator $\mathbf{R}: \Omega_h \rightarrow \Omega_H$
- Injection is the simplest restriction

- Not an efficient approach, as the errors on the fine node is not corrected on the coarse level
- Weighted restriction: $\mathbf{R} = c \mathbf{P}^{\top}$ (used restrict primal quantities)

■ In FE framework $\mathbf{R} = \mathbf{P}^{\top}$ (used to restrict residuals/dual quantities)

Further observations on transfer operators

- Columns of interpolation matrix represent basis functions
- Thus the basis functions on coarse level are constructed as linear combination of the basis functions from the finest level
- Hierarchy of nested spaces
- Full rank for of the transfer operator
- The constant functions are preserved when going to the fine level

Two-level method

Coarse grid correction scheme:

- 1. Perform v_{pre} pre-smoothing steps:
- 2. Restrict residual to the coarse grid:
- 3. Solve coarse grid equation:
- 4. Interpolate correction to the fine grid:
- **5.** Perform v_{post} post-smoothing steps:

 $x_{h} \leftarrow x_{h} + S^{\nu_{pre}}(b_{h} - A_{h}x_{h})$ $r_{H} \leftarrow R(b - A_{h}x_{h})$ $A_{H}e_{H} = r_{H}$ $x_{h} \leftarrow x_{h} + Pe_{H}$ $x_{h} \leftarrow x_{h} + S^{\nu_{post}}(b_{h} - A_{h}x_{h})$

Coarse grid matrix

Question: How to construct A_H ?

- A straightforward approach consists of constructing A_H by discretizing the PDE on Ω_H
- Galerkin projection approach can be given as:

 $egin{aligned} egin{aligned} egi$

- Galerkin projection based on the assumption that the error e_h is in the range of the prolongation. This property is in general not given.
- For simple cases, A_H constructed using rediscretization and Galerkin projection coincides
- Although, it does not hold in general

Analysis of two-grid method

Recall iterative method

$$\boldsymbol{x}_h \leftarrow (\boldsymbol{I} - \boldsymbol{M}^{-1}\boldsymbol{A})\boldsymbol{x}_h + \boldsymbol{M}^{-1}\boldsymbol{b}_h$$

Two grid iteration process

$$\boldsymbol{I} - \boldsymbol{M}_{TG}^{-1}\boldsymbol{A}_{h} = (\boldsymbol{I} - \boldsymbol{M}^{-\top}\boldsymbol{A}_{h})^{\nu_{post}} (\boldsymbol{I} - \boldsymbol{P}(\boldsymbol{P}^{\top}\boldsymbol{A}_{h}\boldsymbol{P})^{-1}\boldsymbol{P}^{\top}\boldsymbol{A}_{h}) (\boldsymbol{I} - \boldsymbol{M}^{-1}\boldsymbol{A}_{h})^{\nu_{pre}}$$

Error propagation

$$\boldsymbol{e} \leftarrow (\boldsymbol{I} - \boldsymbol{M}_{TG}^{-1}\boldsymbol{A})^k \boldsymbol{e}$$

■ The two-grid method converges, if and only if

$$\rho(\boldsymbol{I} - \boldsymbol{M}_{TG}^{-1}\boldsymbol{A}) < 1$$

ト 4 王

Analysis of two-grid method

Two-grid iteration matrix without post-smoothing steps:

$$\boldsymbol{G}_{TG} = \boldsymbol{I} - \boldsymbol{M}_{TG}^{-1} \boldsymbol{A}_h = (\boldsymbol{I} - \boldsymbol{P}(\boldsymbol{P}^{\top} \boldsymbol{A}_h \boldsymbol{P})^{-1} \boldsymbol{P}^{\top} \boldsymbol{A}_h) (\boldsymbol{I} - \boldsymbol{M}^{-1} \boldsymbol{A}_h)^{\nu}$$

$$\begin{aligned} \mathbf{G}_{TG} \|_{2} &= \| (\mathbf{I} - \mathbf{P} (\mathbf{P}^{\mathsf{T}} \mathbf{A}_{h} \mathbf{P})^{-1} \mathbf{P}^{\mathsf{T}} \mathbf{A}_{h}) \mathbf{G}_{s}^{\mathsf{v}} \|_{2} \\ &= \| (\mathbf{I} - \mathbf{P} (\mathbf{P}^{\mathsf{T}} \mathbf{A} \mathbf{P})^{-1} \mathbf{P}^{\mathsf{T}} \mathbf{A}) \mathbf{A}_{h}^{-1} \mathbf{A}_{h} \mathbf{G}_{s}^{\mathsf{v}} \|_{2} \\ &\leq \| \mathbf{A}_{h}^{-1} - \mathbf{P} (\mathbf{P}^{\mathsf{T}} \mathbf{A}_{h} \mathbf{P})^{-1} \mathbf{P}^{\mathsf{T}}) \|_{2} \| \mathbf{A}_{h} \mathbf{G}_{s}^{\mathsf{v}} \|_{2} \\ &= \underbrace{\| \mathbf{A}_{h}^{-1} - \mathbf{P} \mathbf{A}_{c}^{-1} \mathbf{P}^{\mathsf{T}} \right) \|_{2} \underbrace{\| \mathbf{A}_{h} \mathbf{G}_{s}^{\mathsf{v}} \|_{2}}_{\text{approximation property}} \underbrace{\| \mathbf{A}_{h} \mathbf{G}_{s}^{\mathsf{v}} \|_{2}}_{\text{smoothing property}} \end{aligned}$$

Smoothing property and approximation property

$$\|\boldsymbol{A}_{h}\boldsymbol{G}_{s}^{\nu}\|_{2} \leq \frac{c}{\nu}h^{-2} \qquad \qquad \|\boldsymbol{A}_{h}^{-1} - \boldsymbol{P}\boldsymbol{A}_{c}^{-1}\boldsymbol{P}^{\top}\|_{2} \leq ch^{2}$$

Contraction property for sufficiently large v

$$\|\boldsymbol{G}_{TG}\|_2 \leq \frac{c}{\nu} < 1$$

Table of Contents

1 Overview

2 Model problem

- Basic iterative methods
- 4 Smoothers
- 5 Two-grid method
- 6 Multigrid method
- 7 Numerical Results
- Outlook and extensions

Sketch of multigrid method

Type of multigrid cycles

Multigrid extension

- V-cycle
 - Recursive formulation of the two-grid method
- W-cycle
 - Useful when coarse grid is not optimal
 - Realized by calling V-cycle twice on each level
- F-cycle
 - Requires discretization on grid
 - Motivated by nested iteration
 - Eliminates errors from coarse to fine level

▶ < ∃ >

Table of Contents

1 Overview

2 Model problem

Basic iterative methods

4 Smoothers

- 5 Two-grid method
- 6 Multigrid method
- Numerical Results
- Outlook and extensions

Numerical experiments

Poisson problem

Comparing various MG-cycles

mesh size	# levels	V(3,3)	V(5,5)	W(3,3)	W(5,5)
20×20	2	7	6	6	6
40×40	3	8	8	7	6
80×80	4	9	8	7	6
160×160	5	10	9	7	6
320×320	6	10	9	7	6

Iterations

mesh size	# levels	V(3,3)	V(5,5)	W(3,3)	W(5,5)
20×20	2	0.0139	0.0057	0.0139	0.0057
40×40	3	0.0372	0.0185	0.0182	0.0093
80×80	4	0.0460	0.0276	0.0184	0.0106
160×160	5	0.0467	0.0299	0.0186	0.0108
320×320	6	0.0551	0.0312	0.0179	0.0108

Asymptotic convergence rate
$$(\rho^* = \frac{\|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^{(k)}\|_A}{\|\boldsymbol{x}^{(k)} - \boldsymbol{x}^{(k-1)}\|_A})$$

Convergence of V(3,3) cycle

э

▲ 臣 ▶ | ▲ 臣 ▶

Convergence of V(5,5) cycle

э

(E)

Convergence of W(3,3) cycle

э

(E)

Convergence of W(5,5) cycle

э

(E)

Outlook and extensions

Table of Contents

Overview

2 Model problem

Basic iterative methods

4 Smoothers

- 5 Two-grid method
- 6 Multigrid method
- 7 Numerical Results
- Outlook and extensions

▶ < ∃ >

Outlook and extensions

Still many topics remain

Algebraic multigrid methods

- Aims to construct better transfer operators
- When mesh is not available
- Utilizes only graph information from matrix
- Compute strength between the edges of graph

AMG libraries:

- Hypre BoomerAMG: http://acts.nersc.gov/hypre/
- Trilinos muLU: https://trilinos.org/
- PyAMG: http://pyamg.org/
- PETSc: https://petsc.org

Questions?

Contact: hardik.kothari@usi.ch

53

æ

イロト イロト イヨト イヨト