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Motivation

What is a Parallel-in-Time method?
Methods that compute solutions at a further time step before that the solution at a closer
time step has been computed.

Usually iterative methods

Usually comes at the expense of additional work

Why are Parallel-in-Time methods interesting?

Problems that need a solution by a certain deadline

Problems that are very long in time
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Outline

Traditionally, Parallel-in-Time methods are classified in the following categories:

1 Shooting type methods
Parareal

2 Multigrid methods
Multigrid Reduction-in-Time
Space-Time Multigrid

3 Domain Decomposition methods
Schwarz Waveform Relaxation

4 Direct methods
ParaExp

Space-time decomposition in ...

time space and time space

t

x
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Setting

We will solve the 1d heat equation (c = 1)
ut(x , t) = uxx(x , t) , (x , t) ∈ (0, L)× (0,T ) ,

u(0, t) = u(L, t) = 0 , t ∈ (0,T ) ,

u(x , 0) = u0(x) , x ∈ (0, L) .

We will discretize it using finite differences in space,{
vt(t) = 1

∆x2 L v(t) , t ∈ (0,T )

v(0) = u0 .
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Setting

Given the problem {
vt(t) = 1

∆x2 L v(t) , t ∈ (0,T )

v(0) = u0 ∈ Rnx .

We discretize in time using a Runge-Kutta scheme

un+1 = Φun , u0 = v(0) ∈ Rnx , n = 0, 1, . . . ,Nt

Example: If we use Backward Euler Φ = (I − ∆t
∆x2L)−1.

t0 = 0 t1 t2 t3 t4 t5 = T

Φ Φ Φ Φ Φ
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Parareal
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First step: Nievergelt’s method (1964)

Method introduced in a 3-page paper in 1964 by J. Nievergelt.
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Developments of the method

1989 Bellen and Zenaro: solve un+1 = Φ un using (a variant of) Newton’s method.

uk+1 = ϕ(uk) + ∆ϕ(uk)(uk+1 − uk) ,

where ϕ(u) =


u0 − v(0)
u1 − Φ u0

...
uN − Φ uN−1

 and u =


u0

u1
...
uN

 .

Quadratic convergence
Finite-time convergence

1993 Chartier and Philippe: Noticed that it isn’t effective for all kinds of problems.
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Parareal1

Consider a coarsening factor of m (fine/coarse grid). Let F = Φm and G a cheap
approximation of F .

Idea: Approximate ∆ϕ by the finite difference (G Uk+1
n − G Uk

n )/(Uk+1
n − Uk

n ).

Initialization: {
U0

0 = u0

U0
n+1 = G U0

n , n = 0, . . . ,Nt − 1 .

Parareal iteration: for k = 0, . . . ,K − 1{
Uk+1

0 = u0 ,

Uk+1
n+1 = F Uk

n + G Uk+1
n − G Uk

n , n = 0, . . . ,Nt − 1 .

1Lions, Maday, Turinici (2001)
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Illustration of Parareal

Initialization: {
U0

0 = u0

U0
n+1 = GU0

n , n = 0, . . . ,Nt − 1 .
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Summary

Nievergelt’s method is too expensive for large problems

Parallelism in Parareal is achieved though additional work of a coarse operator

For Parareal to be effective, the coarse operator needs to:

be a good approximation of the fine
be much cheaper to compute
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Multigrid Reduction-in-Time
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All-at-once system

We are interested in solving the time stepping scheme

un+1 = Φun , u0 = u0, n = 0, 1, . . . ,Nt − 1 .

This can be written as the following system to solve
I
−Φ I

. . .
. . .

−Φ I


︸ ︷︷ ︸

=:A


u0

u1
...

uNt


︸ ︷︷ ︸

=:u

=


0
0
...
0


︸ ︷︷ ︸

=:b

→ It can be solved using Multigrid!

Ausra Pogozelskyte (University of Geneva) Introduction to Parallel-in-time methods Paris, 16th of May 2023 15 / 54



Multigrid Reduction-in-Time

The Multigrid Reduction-in-Time algorithm2 (MGRIT) follows the same steps as a traditional
Multigrid algorithm:

1 Pre-smoothing: FCF-relaxation

2 Computation of the residual and restriction: Injection

3 Coarse grid solve

4 Prolongation and correction: Ideal prolongation

5 Post-smoothing: None

2Falgout, Friedhoff, Kolev, MacLachlan, Schroder (2014)
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Smoothing: What is FCF-relaxation?

fine grid

coarse grid

C-points points that belong both to the coarse and fine grids

F-points the others

C-relaxation update C-points

F-relaxation update F-points

Link to Parareal: F = Φm
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Transfer operators in MGRIT

fine grid

coarse grid

Restriction by injection

Φ Φ Φ Φ

Ideal prolongation

Ausra Pogozelskyte (University of Geneva) Introduction to Parallel-in-time methods Paris, 16th of May 2023 18 / 54



Parareal and MGRIT are related

Recall (Parareal){
Uk+1

0 = u0 k = 0, . . . ,K ,

Uk+1
n+1 = F Uk

n + G Uk+1
n − G Uk

n n = 0, . . . ,Nt − 1, k = 0, . . . ,K .

Theorem (Gander, Kwok, Zhang, 2018)

The two-level MGRIT algorithm with FCF-relaxation computes the same iterations as the
Parareal algorithm using generous overlap of one coarse time interval

Uk+1
0 = u0 k = 0, . . . ,K ,

Uk+1
1 = F u0 k = 0, . . . ,K ,

Uk+1
n+1 = F F Uk

n−1 + G Uk+1
n − G F Uk

n−1 n = 0, . . . ,Nt − 1, k = 0, . . . ,K .
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Parareal and MGRIT are related

Parareal (MGRIT with F-relaxation)

F F F F

MGRIT with FCF-relaxation

F 2

F 2

F 2

Ausra Pogozelskyte (University of Geneva) Introduction to Parallel-in-time methods Paris, 16th of May 2023 20 / 54



How do Parareal and MGRIT converge?

The convergence of Parareal: from the iteration

Uk+1
n+1 = F Uk

n + G Uk+1
n − G Uk

n , n = 1, . . . , nt ,

the error, εkn := un − Uk
n , can be computed as

εk+1
n+1 = F εkn + G εk+1

n − G εkn .

In turn, it can be bounded as

‖εk+1
n+1‖ =: ek+1

n+1 ≤ ‖F − G‖︸ ︷︷ ︸
=α

ekn + ‖G‖︸︷︷︸
=β

ek+1
n .

We thus only need to solve the iteration

ek+1
n+1 = α ekn + β ek+1

n .
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How do Parareal and MGRIT converge?

The iteration ekn+1 = α ek−1
n + β ekn can be written in matrix form as

I
−β I

. . .
. . .

−β I



ek0
ek1
...
eknt

 =


0
α 0

. . .
. . .

α 0



ek−1

0

ek−1
1
...

ek−1
nt

 .

Lemma (Recurrence solving)

Assuming that α and β are scalars, the error at step k is given by

ek = M(β) (Int ⊗ α) ek−1 = . . . = M(β)k (Int ⊗ αk) e0 ,
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How do Parareal and MGRIT converge?

We then want to bound
ek = M(β)k (Int ⊗ αk) e0 .

Linear Bound [Lemma 4.4, Gander, Vandewalle, 2007]

‖M(β)k‖∞ ≤ ‖M(β)‖k∞ =

(
1− |β|nt
1− |β|

)k

.

Superlinear Bound [Lemma 4.3, Gander, Vandewalle, 2007]

‖M(β)k‖∞ =
nt−k∑
i=0

(
i + k − 1

k − 1

)
|β|i =

1

(k − 1)!

nt−k∑
i=0

[
k−1∏
l=1

(i + l)

]
|β|i

M. J. Gander, S. Vandewalle. “Analysis of the Parareal Time-Parallel Time-Integration Method”, 2007.
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(
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1− |β|

)k

.

Explicit Superlinear Bound [Lemma 4.4, Gander, Vandewalle, 2007]

If |β| < 1, then

‖M(β)k‖∞ ≤
(
nt
k

)
=

1

k!

k−1∏
l=0

(nt − l) .

M. J. Gander, S. Vandewalle. “Analysis of the Parareal Time-Parallel Time-Integration Method”, 2007.
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Bound on the eigenvalues3

Assume λF and λG are the eigenvalues of F and G .
Let α = λF − λG and β = λG , then

‖M(β)(Int ⊗ α)‖∞ ≤ |λF − λG |
1− |λG |nt
1− |λG |

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−3 −2 −1 0 1 2 3

Heat equation

Frequencies ωk

λF
λG

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

=

<

λF
λG

exact

Advection equation

3Dobrev, Kolev, Petersson, Schroder (2017)
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0.2

0.4

0.6

0.8

1

1.2

−3 −2 −1 0 1 2 3

Frequencies ωk

bound for adv.
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Convergence of Parareal and MGRIT

Initial guess: u0(x) = sin(πx), x ∈ [0, 1]. nx = 100, nt = 256, T = 0.02 for heat and T = 1
for advection. SDIRK2 in time and second order centered for heat and upwind for advection.
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Convergence of Parareal and MGRIT

Efficiency =
Speedup

# processors
=

Tseq

Tpara ·# processors
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Summary

MGRIT is a multilevel version of Parareal

MGRIT usually uses FCF-relaxation, whereas Parareal uses F-relaxation

From superlinear bound: superlinear + finite time convergence

From linear bound: eigenvalues that are close to unity need to be well approximated.

Ausra Pogozelskyte (University of Geneva) Introduction to Parallel-in-time methods Paris, 16th of May 2023 26 / 54



References

Analysis of the Parareal Time-Parallel Time-Integration Method (2007)
M. J. Gander, S. Vandewalle

Parallel Time Integration with Multigrid (2014)
R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, J. B. Schroder

Two-Level Convergence Theory for Multigrid Reduction in Time (MGRIT) (2017)
V. A. Dobrev, Tz. V. Kolev, N. A. Petersson, J. B. Schroder

Scheduling of tasks in the Parareal algorithm (2011)
E. Aubanel

A Unified Analysis Framework for Iterative Parallel-in-Time Algorithms (2022)
M. J. Gander, T. Lunet, D. Ruprecht, R. Speck

Ausra Pogozelskyte (University of Geneva) Introduction to Parallel-in-time methods Paris, 16th of May 2023 27 / 54



Space-Time Multigrid
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All-at-once system

The time-stepping procedure

un+1 = Φun , u0 = u0 , n = 0, 1, . . . ,Nt − 1 ,

was formulated as a all-at-once system for MGRIT. For the Space-Time algorithm, we
consider a different formulation.

Separate the operator Φ = Q−1P where Q and P are the implicit and explicit parts of Φ.
In turn, it can be written as the all-at-once system,

Q
−P Q

. . .
. . .

−P Q


︸ ︷︷ ︸

=:A


u1

u2
...

uNt


︸ ︷︷ ︸

=:u

=


P u0

0
...
0


︸ ︷︷ ︸

=:b

.
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Space-Time Multigrid with point-wise smoother4

Idea: Apply Multigrid on the space-time problem.

1 Pre-smoothing: ν1 damped Jacobi iterations

2 Computation of the residual and restriction: Full-weighting

3 Coarse grid solve

4 Prolongation and correction: Linear interpolation

5 Post-smoothing: ν2 damped Jacobi iterations

Reminder: The point-wise recall the damped Jacobi smoother is given by

vk+1 = vk + ωD−1[b − Avk ]

where D is the diagonal matrix such that Dii = Aii .

4Horton, Vandewalle (1995)
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Transfer operators in STMG

fine grid

coarse grid

Restriction by full-weighting Linear interpolation

×1 ×0.5 ×0.25
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Space-Time Multigrid with point-wise smoother

Figure: Convergence factor of STMG with point-wise smoother from Horton, Vandewalle (1995)
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STMG with block Jacobi smoother5

Goal: Be able to always smooth in the time dimension.

Consider the damped block-Jacobi smoother

vk+1 = vk + ωD−1[b − Avk ] ,

with D a block diagonal matrix with blocks Q and ω ∈ [0, 2] a damping parameter.

→ Always allows for coarsening in time

5Gander, Neumüller (2016)
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STMG has good scaling properties

Weak and Strong scaling results: 3D Heat Equation

Weak scaling Strong scaling

cores nt dof iter time fwd. subs. nt dof iter time

1 2 59,768 7 28.8 19.0 512 15,300,608 7 7,635.2
2 4 119,536 7 29.8 37.9 512 15,300,608 7 3,821.7
4 8 239,072 7 29.8 75.9 512 15,300,608 7 1,909.9
8 16 478,144 7 29.9 152.2 512 15,300,608 7 954.2

16 32 956,288 7 29.9 305.4 512 15,300,608 7 477.2
32 64 1,912,576 7 29.9 613.6 512 15,300,608 7 238.9
64 128 3,825,152 7 29.9 1,220.7 512 15,300,608 7 119.5

128 256 7,650,304 7 29.9 2,448.4 512 15,300,608 7 59.7
256 512 15,300,608 7 30.0 4,882.4 512 15,300,608 7 30.0

Table: Vulcan BlueGene /Q Supercomputer in Livermore (Martin Neumüller)
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The convergence of STMG depends on the ratio σ = ∆t/∆x2

Let µ be the smoothing factor associated to the block-Jacobi smoother obtained by Local
Fourier Analysis (LFA),

10−3 10−2 10−1 100 101 102 103

σ

0.0

0.2
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1.0
μ(
μ
)2

Default (μ=0.5)
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Summary

STMG has very good scaling properties

The convergence of STMG depends on the ratio ∆t/∆x2

STMG with block-smoothing allows to always coarsen in time

Ausra Pogozelskyte (University of Geneva) Introduction to Parallel-in-time methods Paris, 16th of May 2023 36 / 54



References

A Space-Time Multigrid for Parabolic Partial Differential Equations (1995)
G. Horton, S. Vandewalle

Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems (2016)
M. J. Gander, M. Neumüller

An Optimized Space-Time Multigrid Algorithm for Parabolic PDEs (2023, in review)
B. Chaudet-Dumas, M. J. Gander, A. P.

Ausra Pogozelskyte (University of Geneva) Introduction to Parallel-in-time methods Paris, 16th of May 2023 37 / 54



Schwarz Waveform Relaxation
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Schwarz Waveform Relaxation

We will solve the 1D heat equation
ut(x , t) = uxx(x , t) , (x , t) ∈ Ω× (0,T ) ,

u(x , t) = 0 , x ∈ ∂Ω, t ∈ (0,T ) ,

u(x , 0) = u0(x) , x ∈ Ω .

Partition the domain Ω = Ω1 ∪ Ω2.
Define for i ∈ {0, 1},

∂tu
k+1
i (x , t) = ∂xxu

k+1
i (x , t) (x , t) ∈ Ω1 × (0,T ]

uk+1
i (x , 0) = u0(x) x ∈ Ωi

uk+1
i (x , t) = 0 x ∈ ∂Ω, t ∈ (0,T ]

uk+1
i (Γi , t) = uk1−i (Γi , t) t ∈ (0,T ]

u0

0

0

t
x
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Convergence of SWR

Goal: Compute the solution for the
1D heat equation with Dirichlet
boundary conditions with u0 = 20
and initial guess u0 = 0.

On the right, first 6 iterations of
SWR at time T = 0.5.
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Convergence is superlinear6
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6M. J. Gander (1997, PhD thesis)
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Optimized Schwarz Waveform Relaxation

Recall: Schwarz wave relaxation is given for i ∈ {0, 1} by
∂tu

k+1
i (x , t) = ∂xxu

k+1
i (x , t) (x , t) ∈ Ω1 × (0,T ]

uk+1
i (x , 0) = u0(x) x ∈ Ωi

uk+1
i (x , t) = 0 x ∈ ∂Ω, t ∈ (0,T ]

uk+1
i (Γi , t) = uk1−i (Γi , t) t ∈ (0,T ]

Goal: Do SWR without overlap.
∂tu

k+1
i (x , t) = ∂xxu

k+1
i (x , t) (x , t) ∈ Ω1 × (0,T ]

uk+1
i (x , 0) = u0(x) x ∈ Ωi

uk+1
i (x , t) = 0 x ∈ ∂Ω, t ∈ (0,T ]

(∂x + p)uk+1
i (Γi , t) = (∂x + p)uk1−i (Γi , t) t ∈ (0,T ]

Solution: Change transmission conditions to Robin type and optimize for p.
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Optimizing Optimized Schwarz Waveform Relaxation
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Summary

Schwarz Wave Relaxation allows parallelism in time by cutting the spatial domain in two
(or more) subdomains

Schwarz Wave Relaxation has superlinear convergence

Optimized Schwarz Waveform Relaxation allows to have no overlap between domains.
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ParaExp
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ParaExp

Introduced by Gander and Güttel in 2013. Let A ∈ Rn×n and f a non-linear function.

u′(t) = A u(t) + f (t), t ∈ (0,T ), u(0) = u0 .

Observation

A homogenous problem can be integrated much faster than an inhomogenous problem.

Separate u = v + w , where
v ′(t) = A v(t), v(0) = u0 ,

w ′(t) = A w(t) + f (t), w(0) = 0 .
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ParaExp — illustration

Figure: Illustration of ParaExp from the original article (Gander, Güttel, 2013)

1 On [Tn,Tn+1]: Solve with serial integrator

2 On [Tn,T ]: Solve with near optimal exponential integrator

3 Get the final solution by superposition of solutions
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Fast computation of matrix exponentials

Question: If A is very big, how to compute efficiently exp(t A)?

Idea: Compute exp(t A) v directly for some initial condition v using Krylov methods.

1 Generate the Krylov space Km = span{v ,Av , . . . ,Am−1v}.
Use the Arnoldi method.

2 Get an orthonormal basis Vm of Km.

Use a modified Gram-Schmidt process.

3 Compute Hm the projection of A on the space Km with respect to the basis Vm.

The matrix Hm is upper Hessenberg and verifies Hm = V>m AVm.

4 Get the approximation etA ≈ βVme
tHme1 (good even for small m)

Apply traditional techniques to compute etHme1.
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What about non-linear problems?

Consider the non-linear problem, with B : Rn → Rn a non-linear application,

u′(t) = A u(t) + B(u(t)) + f (t), t ∈ [0,T ], u(0) = u0 .

Problem: Applying the splitting u = v + w does not verify the original equation.

v ′(t) = A v(t), v(0) = u0 ,

w ′(t) = A w(t) + B(w(t)) + f (t), w(0) = 0 .
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Non-linear ParaExp

Consider the following iterative method: for k = 0 initialize

u0
n = w0

n = 0, n = 0, . . . ,Nt − 1 .

For k = 1, 2, . . . solve the homogenous problems

(wk
n )′(t) = Awk

n (t) t ∈ [Tn−1,Tn]

wk
1 (T0) = u0, w

k
n (0) = uk−1

n−1 (0)−
n−1∑
j=1

wk−1
j (0)

and then solve the non-homogenous problem

(ukn )′(t) = Aukn (t) + B(ukn (t)) + f (t), t ∈ [Tn−1,Tn]

ukn (0) =
n∑

j=1

wk
j (Tn−1)
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Non-linear ParaExp equivalence with Parareal

Theorem [Theorem 2, Gander, Güttel, Petcu, 2018]

Let the coarse propagator G (Un) solve the linear problem

u′(t) = Au(t), t ∈ (Tn,Tn+1), u(0) = Un

and the fine propagator F (Un) solve the non-linear problem

u′(t) = Au(t) + B(u(t)) + f (t), t ∈ (Tn,Tn+1), u(0) = Un

Then the Parareal iteration computed with those operators is equivalent to the non-linear
ParaExp algorithm.
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Summary

Direct method for linear problems

Acceleration of computation of the exponential using Krylov methods

Iterative method for non-linear problems

Equivalence of non-linear ParaExp with Parareal
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