An Introduction to Parallel-in-time methods

Ausra Pogozelskyte
University of Geneva
Paris, 16th of May 2023

Motivation

What is a Parallel-in-Time method?
Methods that compute solutions at a further time step before that the solution at a closer time step has been computed.

- Usually iterative methods
- Usually comes at the expense of additional work

Why are Parallel-in-Time methods interesting?

- Problems that need a solution by a certain deadline
- Problems that are very long in time

Outline

Traditionally, Parallel-in-Time methods are classified in the following categories:
(1) Shooting type methods

- Parareal
(2) Multigrid methods
- Multigrid Reduction-in-Time
- Space-Time Multigrid
(3) Domain Decomposition methods
- Schwarz Waveform Relaxation

4 Direct methods

- ParaExp

Space-time decomposition in ...

References

- 50 Years of Time Parallel Time Integration (2015)
M. J. Gander
- Applications of time parallelization (2020)
B. W. Ong and J. B. Schroder
- Multigrid methods with space-time concurrency (2017)
R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, J. B. Schroder, S. Vandewalle

Setting

We will solve the 1 d heat equation $(c=1)$

$$
\begin{cases}u_{t}(x, t)=u_{x x}(x, t), & (x, t) \in(0, L) \times(0, T), \\ u(0, t)=u(L, t)=0, & t \in(0, T), \\ u(x, 0)=u_{0}(x), & x \in(0, L)\end{cases}
$$

We will discretize it using finite differences in space,

$$
\left\{\begin{array}{l}
v_{t}(t)=\frac{1}{\Delta x^{2}} L v(t), \quad t \in(0, T) \\
v(0)=u_{0}
\end{array}\right.
$$

Setting

We will solve the 1 d heat equation $(c=1)$

$$
\begin{cases}u_{t}(x, t)=u_{x x}(x, t), & (x, t) \in(0, L) \times(0, T) \\ u(0, t)=u(L, t)=0, & t \in(0, T) \\ u(x, 0)=u_{0}(x), & x \in(0, L)\end{cases}
$$

We will discretize it using finite differences in space,

$$
L=\left(\begin{array}{cccc}
-2 & 1 & & \\
1 & -2 & \ddots & \\
& \ddots & \ddots & 1 \\
& & 1 & -2
\end{array}\right)
$$

$$
\left\{\begin{array}{l}
v_{t}(t)=\frac{1}{\Delta x^{2}} L v(t), \quad t \in(0, T) \\
v(0)=u_{0}
\end{array}\right.
$$

Setting

Given the problem

$$
\left\{\begin{array}{l}
v_{t}(t)=\frac{1}{\Delta x^{2}} L v(t), \quad t \in(0, T) \\
v(0)=u_{0} \in \mathbb{R}^{n_{x}}
\end{array}\right.
$$

We discretize in time using a Runge-Kutta scheme

$$
u_{n+1}=\Phi u_{n}, \quad u_{0}=v(0) \in \mathbb{R}^{n_{x}}, \quad n=0,1, \ldots, N_{t}
$$

Example: If we use Backward Euler $\Phi=\left(I-\frac{\Delta t}{\Delta x^{2}} L\right)^{-1}$.

Setting

Given the problem

$$
\left\{\begin{array}{l}
v_{t}(t)=\frac{1}{\Delta x^{2}} L v(t), \quad t \in(0, T) \\
v(0)=u_{0} \in \mathbb{R}^{n_{x}}
\end{array}\right.
$$

We discretize in time using a Runge-Kutta scheme

$$
u_{n+1}=\Phi u_{n}, \quad u_{0}=v(0) \in \mathbb{R}^{n_{x}}, \quad n=0,1, \ldots, N_{t}
$$

Example: If we use Backward Euler $\Phi=\left(I-\frac{\Delta t}{\Delta x^{2}} L\right)^{-1}$.

Setting

Given the problem

$$
\left\{\begin{array}{l}
v_{t}(t)=\frac{1}{\Delta x^{2}} L v(t), \quad t \in(0, T) \\
v(0)=u_{0} \in \mathbb{R}^{n_{x}}
\end{array}\right.
$$

We discretize in time using a Runge-Kutta scheme

$$
u_{n+1}=\Phi u_{n}, \quad u_{0}=v(0) \in \mathbb{R}^{n_{x}}, \quad n=0,1, \ldots, N_{t}
$$

Example: If we use Backward Euler $\Phi=\left(I-\frac{\Delta t}{\Delta x^{2}} L\right)^{-1}$.

Setting

Given the problem

$$
\left\{\begin{array}{l}
v_{t}(t)=\frac{1}{\Delta x^{2}} L v(t), \quad t \in(0, T) \\
v(0)=u_{0} \in \mathbb{R}^{n_{x}}
\end{array}\right.
$$

We discretize in time using a Runge-Kutta scheme

$$
u_{n+1}=\Phi u_{n}, \quad u_{0}=v(0) \in \mathbb{R}^{n_{x}}, \quad n=0,1, \ldots, N_{t}
$$

Example: If we use Backward Euler $\Phi=\left(I-\frac{\Delta t}{\Delta x^{2}} L\right)^{-1}$.

Setting

Given the problem

$$
\left\{\begin{array}{l}
v_{t}(t)=\frac{1}{\Delta x^{2}} L v(t), \quad t \in(0, T) \\
v(0)=u_{0} \in \mathbb{R}^{n_{x}}
\end{array}\right.
$$

We discretize in time using a Runge-Kutta scheme

$$
u_{n+1}=\Phi u_{n}, \quad u_{0}=v(0) \in \mathbb{R}^{n_{x}}, \quad n=0,1, \ldots, N_{t}
$$

Example: If we use Backward Euler $\Phi=\left(I-\frac{\Delta t}{\Delta x^{2}} L\right)^{-1}$.

Parareal

First step: Nievergelt's method (1964)

Method introduced in a 3-page paper in 1964 by J. Nievergelt.

First step: Nievergelt's method (1964)

Method introduced in a 3-page paper in 1964 by J. Nievergelt.

First step: Nievergelt's method (1964)

Method introduced in a 3-page paper in 1964 by J. Nievergelt.

First step: Nievergelt's method (1964)

Method introduced in a 3-page paper in 1964 by J. Nievergelt.

Developments of the method

1989 Bellen and Zenaro: solve $u_{n+1}=\Phi u_{n}$ using (a variant of) Newton's method.

$$
\begin{gathered}
\boldsymbol{u}^{k+1}=\varphi\left(\boldsymbol{u}^{k}\right)+\Delta \varphi\left(\boldsymbol{u}^{k}\right)\left(\boldsymbol{u}^{k+1}-\boldsymbol{u}^{k}\right) \\
\text { where } \varphi(\boldsymbol{u})=\left(\begin{array}{c}
u_{0}-v(0) \\
u_{1}-\Phi u_{0} \\
\vdots \\
u_{N}-\Phi u_{N-1}
\end{array}\right) \text { and } \boldsymbol{u}=\left(\begin{array}{c}
u_{0} \\
u_{1} \\
\vdots \\
u_{N}
\end{array}\right) .
\end{gathered}
$$

- Quadratic convergence
- Finite-time convergence

1993 Chartier and Philippe: Noticed that it isn't effective for all kinds of problems.

Parareal ${ }^{1}$

Consider a coarsening factor of m (fine/coarse grid). Let $F=\Phi^{m}$ and G a cheap approximation of F.
Idea: Approximate $\Delta \varphi$ by the finite difference $\left(G U_{n}^{k+1}-G U_{n}^{k}\right) /\left(U_{n}^{k+1}-U_{n}^{k}\right)$.

Initialization:

$$
\left\{\begin{array}{l}
U_{0}^{0}=u_{0} \\
U_{n+1}^{0}=G U_{n}^{0}, \quad n=0, \ldots, N_{t}-1
\end{array}\right.
$$

Parareal iteration: for $k=0, \ldots, K-1$

$$
\left\{\begin{array}{l}
U_{0}^{k+1}=u_{0}, \\
U_{n+1}^{k+1}=F U_{n}^{k}+G U_{n}^{k+1}-G U_{n}^{k}, \quad n=0, \ldots, N_{t}-1
\end{array}\right.
$$

Illustration of Parareal

Initialization:

$$
\left\{\begin{array}{l}
U_{0}^{0}=u_{0} \\
U_{n+1}^{0}=G U_{n}^{0}, \quad n=0, \ldots, N_{t}-1
\end{array}\right.
$$

Illustration of Parareal

Parareal iteration: for $k=0, \ldots, K-1$

$$
\left\{\begin{array}{l}
U_{0}^{k+1}=u_{0}, \\
U_{n+1}^{k+1}=F U_{n}^{k}+G U_{n}^{k+1}-G U_{n}^{k}, \quad n=0, \ldots, N_{t}-1 .
\end{array}\right.
$$

Illustration of Parareal

Parareal iteration: for $k=0, \ldots, K-1$

$$
\left\{\begin{array}{l}
U_{0}^{k+1}=u_{0}, \\
U_{n+1}^{k+1}=F U_{n}^{k}+G U_{n}^{k+1}-G U_{n}^{k}, \quad n=0, \ldots, N_{t}-1 .
\end{array}\right.
$$

Summary

- Nievergelt's method is too expensive for large problems
- Parallelism in Parareal is achieved though additional work of a coarse operator
- For Parareal to be effective, the coarse operator needs to:
- be a good approximation of the fine
- be much cheaper to compute

References

- Résolution d'EDP par un schéma en temps "pararéel" (2001) J.-L. Lions, Y. Maday, G. Turinici
- A Micro-Macro Parareal Algorithm: Application to Singularly Perturbed Ordinary Differential Equations (2013)
F. Legoll, T. Lelièvre, G. Samaey
- PARAOPT: A Parareal Algorithm for Optimality Systems (2020) M. J. Gander, F. Kwok, J. Salomon
- Low-rank Parareal: a low-rank parallel-in-time integrator (2023)
B. Carrel, M. J. Gander, B. Vandereycken

Multigrid Reduction-in-Time

All-at-once system

We are interested in solving the time stepping scheme

$$
u_{n+1}=\Phi u_{n}, \quad u_{0}=u_{0}, \quad n=0,1, \ldots, N_{t}-1
$$

This can be written as the following system to solve

$$
\underbrace{\left(\begin{array}{cccc}
I & & & \\
-\Phi & I & & \\
& \ddots & \ddots & \\
& & -\Phi & I
\end{array}\right)}_{=: A} \underbrace{\left(\begin{array}{c}
u_{0} \\
u_{1} \\
\vdots \\
u_{N_{t}}
\end{array}\right)}_{=: \boldsymbol{u}}=\underbrace{\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)}_{=: \boldsymbol{b}}
$$

\rightarrow It can be solved using Multigrid!

Multigrid Reduction-in-Time

The Multigrid Reduction-in-Time algorithm ${ }^{2}$ (MGRIT) follows the same steps as a traditional Multigrid algorithm:
(1) Pre-smoothing: FCF-relaxation
(2) Computation of the residual and restriction: Injection
(3) Coarse grid solve
(9) Prolongation and correction: Ideal prolongation
(5) Post-smoothing: None

[^0]
Smoothing: What is FCF-relaxation?

fine grid

coarse grid

C-points points that belong both to the coarse and fine grids
F-points the others
C-relaxation update C-points
F-relaxation update F-points

Smoothing: What is FCF-relaxation?

fine grid

coarse grid

C-points points that belong both to the coarse and fine grids
F -points the others
C-relaxation update C-points
F-relaxation update F-points

Smoothing: What is FCF-relaxation?

fine grid

coarse grid

C-points points that belong both to the coarse and fine grids
F-points the others
C-relaxation update C-points
F-relaxation update F-points
Link to Parareal: $F=\Phi^{m}$

Transfer operators in MGRIT

fine grid
coarse grid

Restriction by injection

Ideal prolongation

Parareal and MGRIT are related

Recall (Parareal)

$$
\begin{cases}U_{0}^{k+1}=u_{0} & k=0, \ldots, K, \\ U_{n+1}^{k+1}=F U_{n}^{k}+G U_{n}^{k+1}-G U_{n}^{k} & n=0, \ldots, N_{t}-1, \quad k=0, \ldots, K .\end{cases}
$$

Theorem (Gander, Kwok, Zhang, 2018)

The two-level MGRIT algorithm with FCF-relaxation computes the same iterations as the Parareal algorithm using generous overlap of one coarse time interval

$$
\begin{cases}U_{0}^{k+1}=u_{0} & k=0, \ldots, K, \\ U_{1}^{k+1}=F u_{0} & k=0, \ldots, K, \\ U_{n+1}^{k+1}=F F U_{n-1}^{k}+G U_{n}^{k+1}-G F U_{n-1}^{k} & n=0, \ldots, N_{t}-1, \quad k=0, \ldots, K .\end{cases}
$$

Parareal and MGRIT are related

Parareal (MGRIT with F-relaxation)

MGRIT with FCF-relaxation

How do Parareal and MGRIT converge?

The convergence of Parareal: from the iteration

$$
U_{n+1}^{k+1}=F U_{n}^{k}+G U_{n}^{k+1}-G U_{n}^{k}, \quad n=1, \ldots, n_{t}
$$

the error, $\epsilon_{n}^{k}:=u_{n}-U_{n}^{k}$, can be computed as

$$
\epsilon_{n+1}^{k+1}=F \epsilon_{n}^{k}+G \epsilon_{n}^{k+1}-G \epsilon_{n}^{k} .
$$

In turn, it can be bounded as

We thus only need to solve the iteration

How do Parareal and MGRIT converge?

The convergence of Parareal: from the iteration

$$
U_{n+1}^{k+1}=F U_{n}^{k}+G U_{n}^{k+1}-G U_{n}^{k}, \quad n=1, \ldots, n_{t}
$$

the error, $\epsilon_{n}^{k}:=u_{n}-U_{n}^{k}$, can be computed as

$$
\epsilon_{n+1}^{k+1}=F \epsilon_{n}^{k}+G \epsilon_{n}^{k+1}-G \epsilon_{n}^{k} .
$$

In turn, it can be bounded as

$$
\left\|\epsilon_{n+1}^{k+1}\right\|=: e_{n+1}^{k+1} \leq \underbrace{\|F-G\|}_{=\alpha} e_{n}^{k}+\underbrace{\|G\|}_{=\beta} e_{n}^{k+1} .
$$

We thus only need to solve the iteration

$$
e_{n+1}^{k+1}=\alpha e_{n}^{k}+\beta e_{n}^{k+1}
$$

How do Parareal and MGRIT converge?

The iteration $e_{n+1}^{k}=\alpha e_{n}^{k-1}+\beta e_{n}^{k}$ can be written in matrix form as

$$
\left(\begin{array}{cccc}
I & & & \\
-\beta & I & & \\
& \ddots & \ddots & \\
& & -\beta & 1
\end{array}\right)\left(\begin{array}{c}
e_{0}^{k} \\
e_{1}^{k} \\
\vdots \\
e_{n_{t}}^{k}
\end{array}\right)=\left(\begin{array}{cccc}
0 & & & \\
\alpha & 0 & & \\
& \ddots & \ddots & \\
& & \alpha & 0
\end{array}\right)\left(\begin{array}{c}
e_{0}^{k-1} \\
e_{1}^{k-1} \\
\vdots \\
e_{n_{t}}^{k-1}
\end{array}\right) .
$$

Lemma (Recurrence solving)

Assuming that α and β are scalars, the error at step k is given by

$$
\boldsymbol{e}^{k}=M(\beta)\left(I_{n_{t}} \otimes \alpha\right) \boldsymbol{e}^{k-1}=\ldots=M(\beta)^{k}\left(I_{n_{t}} \otimes \alpha^{k}\right) \boldsymbol{e}^{0}
$$

How do Parareal and MGRIT converge?

We then want to bound

$$
\boldsymbol{e}^{k}=M(\beta)^{k}\left(I_{n_{t}} \otimes \alpha^{k}\right) \boldsymbol{e}^{0}
$$

Linear Bound [Lemma 4.4, Gander, Vandewalle, 2007]

$$
\left\|M(\beta)^{k}\right\|_{\infty} \leq\|M(\beta)\|_{\infty}^{k}=\left(\frac{1-|\beta|^{n_{t}}}{1-|\beta|}\right)^{k}
$$

Superlinear Bound [Lemma 4.3, Gander, Vandewalle, 2007]

$$
\left\|M(\beta)^{k}\right\|_{\infty}=\sum_{i=0}^{n_{t}-k}\binom{i+k-1}{k-1}|\beta|^{i}=\frac{1}{(k-1)!} \sum_{i=0}^{n_{t}-k}\left[\prod_{l=1}^{k-1}(i+l)\right]|\beta|^{i}
$$

M. J. Gander, S. Vandewalle. "Analysis of the Parareal Time-Parallel Time-Integration Method", 2007.

How do Parareal and MGRIT converge?

We then want to bound

$$
\boldsymbol{e}^{k}=M(\beta)^{k}\left(I_{n_{t}} \otimes \alpha^{k}\right) \boldsymbol{e}^{0}
$$

Linear Bound [Lemma 4.4, Gander, Vandewalle, 2007]

$$
\left\|M(\beta)^{k}\right\|_{\infty} \leq\|M(\beta)\|_{\infty}^{k}=\left(\frac{1-|\beta|^{n_{t}}}{1-|\beta|}\right)^{k}
$$

Explicit Superlinear Bound [Lemma 4.4, Gander, Vandewalle, 2007]

If $|\beta|<1$, then

$$
\left\|M(\beta)^{k}\right\|_{\infty} \leq\binom{ n_{t}}{k}=\frac{1}{k!} \prod_{l=0}^{k-1}\left(n_{t}-l\right)
$$

M. J. Gander, S. Vandewalle. "Analysis of the Parareal Time-Parallel Time-Integration Method", 2007.

Bound on the eigenvalues ${ }^{3}$

Assume λ_{F} and λ_{G} are the eigenvalues of F and G.
Let $\alpha=\lambda_{F}-\lambda_{G}$ and $\beta=\lambda_{G}$, then

$$
\left\|M(\beta)\left(I_{n_{t}} \otimes \alpha\right)\right\|_{\infty} \leq\left|\lambda_{F}-\lambda_{G}\right| \frac{1-\left|\lambda_{G}\right|^{n_{t}}}{1-\left|\lambda_{G}\right|}
$$

[^1]
Bound on the eigenvalues ${ }^{3}$

Assume λ_{F} and λ_{G} are the eigenvalues of F and G.
Let $\alpha=\lambda_{F}-\lambda_{G}$ and $\beta=\lambda_{G}$, then

$$
\left\|M(\beta)\left(I_{n_{t}} \otimes \alpha\right)\right\|_{\infty} \leq\left|\lambda_{F}-\lambda_{G}\right| \frac{1-\left|\lambda_{G}\right|^{n_{t}}}{1-\left|\lambda_{G}\right|}
$$

[^2]
Convergence of Parareal and MGRIT

Initial guess: $u_{0}(x)=\sin (\pi x), x \in[0,1] . n_{x}=100, n_{t}=256, T=0.02$ for heat and $T=1$ for advection. SDIRK2 in time and second order centered for heat and upwind for advection.

Convergence of Parareal and MGRIT

$$
\text { Efficiency }=\frac{\text { Speedup }}{\# \text { processors }}=\frac{T_{\text {seq }}}{T_{\text {para }} \cdot \# \text { processors }}
$$

Summary

- MGRIT is a multilevel version of Parareal
- MGRIT usually uses FCF-relaxation, whereas Parareal uses F-relaxation
- From superlinear bound: superlinear + finite time convergence
- From linear bound: eigenvalues that are close to unity need to be well approximated.

References

- Analysis of the Parareal Time-Parallel Time-Integration Method (2007) M. J. Gander, S. Vandewalle
- Parallel Time Integration with Multigrid (2014)
R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, J. B. Schroder
- Two-Level Convergence Theory for Multigrid Reduction in Time (MGRIT) (2017)
V. A. Dobrev, Tz. V. Kolev, N. A. Petersson, J. B. Schroder
- Scheduling of tasks in the Parareal algorithm (2011)
E. Aubanel
- A Unified Analysis Framework for Iterative Parallel-in-Time Algorithms (2022) M. J. Gander, T. Lunet, D. Ruprecht, R. Speck

Space-Time Multigrid

All-at-once system

The time-stepping procedure

$$
u_{n+1}=\Phi u_{n}, \quad u_{0}=u_{0}, \quad n=0,1, \ldots, N_{t}-1
$$

was formulated as a all-at-once system for MGRIT. For the Space-Time algorithm, we consider a different formulation.

Separate the operator $\Phi=Q^{-1} P$ where Q and P are the implicit and explicit parts of Φ. In turn, it can be written as the all-at-once system,

$$
\underbrace{\left(\begin{array}{cccc}
Q & & & \\
-P & Q & & \\
& \ddots & \ddots & \\
& & -P & Q
\end{array}\right)}_{=: A} \underbrace{\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{N_{t}}
\end{array}\right)}_{=: \boldsymbol{u}}=\underbrace{\left(\begin{array}{c}
P u_{0} \\
0 \\
\vdots \\
0
\end{array}\right)}_{=: \boldsymbol{b}} .
$$

Space-Time Multigrid with point-wise smoother ${ }^{4}$

Idea: Apply Multigrid on the space-time problem.
(1) Pre-smoothing: ν_{1} damped Jacobi iterations
(2) Computation of the residual and restriction: Full-weighting
(3) Coarse grid solve
(9) Prolongation and correction: Linear interpolation
(3) Post-smoothing: ν_{2} damped Jacobi iterations

Reminder: The point-wise recall the damped Jacobi smoother is given by

$$
\boldsymbol{v}^{k+1}=\boldsymbol{v}^{k}+\omega D^{-1}\left[\boldsymbol{b}-A \boldsymbol{v}^{k}\right]
$$

where D is the diagonal matrix such that $D_{i i}=A_{i j}$.

Transfer operators in STMG

fine grid
coarse grid

Restriction by full-weighting

Linear interpolation

$$
\longrightarrow \quad \times 1 \quad \longrightarrow \quad \times 0.5 \quad \longrightarrow \times 0.25
$$

Space-Time Multigrid with point-wise smoother

Figure: Convergence factor of STMG with point-wise smoother from Horton, Vandewalle (1995)

STMG with block Jacobi smoother ${ }^{5}$

Goal: Be able to always smooth in the time dimension.

Consider the damped block-Jacobi smoother

$$
\boldsymbol{v}^{k+1}=\boldsymbol{v}^{k}+\omega D^{-1}\left[\boldsymbol{b}-A \boldsymbol{v}^{k}\right],
$$

with D a block diagonal matrix with blocks Q and $\omega \in[0,2]$ a damping parameter.
\rightarrow Always allows for coarsening in time

[^3]
STMG has good scaling properties

Weak and Strong scaling results: 3D Heat Equation

	Weak scaling					Strong scaling			
cores	n_{t}	dof	iter	time	fwd. subs.	n_{t}	dof	iter	time
1	2	59,768	7	28.8	19.0	512	$15,300,608$	7	$7,635.2$
2	4	119,536	7	29.8	37.9	512	$15,300,608$	7	$3,821.7$
4	8	239,072	7	29.8	75.9	512	$15,300,608$	7	$1,909.9$
8	16	478,144	7	29.9	152.2	512	$15,300,608$	7	954.2
16	32	956,288	7	29.9	305.4	512	$15,300,608$	7	477.2
32	64	$1,912,576$	7	29.9	613.6	512	$15,300,608$	7	238.9
64	128	$3,825,152$	7	29.9	$1,220.7$	512	$15,300,608$	7	119.5
128	256	$7,650,304$	7	29.9	$2,448.4$	512	$15,300,608$	7	59.7
256	512	$15,300,608$	7	30.0	$4,882.4$	512	$15,300,608$	7	30.0

Table: Vulcan BlueGene /Q Supercomputer in Livermore (Martin Neumüller)

STMG has good scaling properties

Weak and Strong scaling results: 3D Heat Equation

	Weak scaling					Strong scaling			
cores	n_{t}	dof	iter	time	fwd. subs.	n_{t}	dof	iter	time
1	2	59,768	7	28.8	19.0	512	$15,300,608$	7	$7,635.2$
2	4	119,536	7	29.8	37.9	512	$15,300,608$	7	$3,821.7$
4	8	239,072	7	29.8	75.9	512	$15,300,608$	7	$1,909.9$
8	16	478,144	7	29.9	152.2	512	$15,300,608$	7	954.2
16	32	956,288	7	29.9	305.4	512	$15,300,608$	7	477.2
32	64	$1,912,576$	7	29.9	613.6	512	$15,300,608$	7	238.9
64	128	$3,825,152$	7	29.9	$1,220.7$	512	$15,300,608$	7	119.5
128	256	$7,650,304$	7	29.9	$2,448.4$	512	$15,300,608$	7	59.7
256	512	$15,300,608$	7	30.0	$4,882.4$	512	$15,300,608$	7	30.0

Table: Vulcan BlueGene /Q Supercomputer in Livermore (Martin Neumüller)

STMG has good scaling properties

Weak and Strong scaling results: 3D Heat Equation

	Weak scaling					Strong scaling			
cores	n_{t}	dof	iter	time	fwd. subs.	n_{t}	dof	iter	time
1	2	59,768	7	28.8	19.0	512	$15,300,608$	7	$7,635.2$
2	4	119,536	7	29.8	37.9	512	$15,300,608$	7	$3,821.7$
4	8	239,072	7	29.8	75.9	512	$15,300,608$	7	$1,909.9$
8	16	478,144	7	29.9	152.2	512	$15,300,608$	7	954.2
16	32	956,288	7	29.9	305.4	512	$15,300,608$	7	477.2
32	64	$1,912,576$	7	29.9	613.6	512	$15,300,608$	7	238.9
64	128	$3,825,152$	7	29.9	$1,220.7$	512	$15,300,608$	7	119.5
128	256	$7,650,304$	7	29.9	$2,448.4$	512	$15,300,608$	7	59.7
256	512	$15,300,608$	7	30.0	$4,882.4$	512	$15,300,608$	7	30.0

Table: Vulcan BlueGene /Q Supercomputer in Livermore (Martin Neumüller)

The convergence of STMG depends on the ratio $\sigma=\Delta t / \Delta x^{2}$

Let μ be the smoothing factor associated to the block-Jacobi smoother obtained by Local Fourier Analysis (LFA),

Summary

- STMG has very good scaling properties
- The convergence of STMG depends on the ratio $\Delta t / \Delta x^{2}$
- STMG with block-smoothing allows to always coarsen in time

References

- A Space-Time Multigrid for Parabolic Partial Differential Equations (1995) G. Horton, S. Vandewalle
- Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems (2016) M. J. Gander, M. Neumüller
- An Optimized Space-Time Multigrid Algorithm for Parabolic PDEs (2023, in review) B. Chaudet-Dumas, M. J. Gander, A. P.

Schwarz Waveform Relaxation

Schwarz Waveform Relaxation

We will solve the 1D heat equation

$$
\begin{cases}u_{t}(x, t)=u_{x x}(x, t), & (x, t) \in \Omega \times(0, T), \\ u(x, t)=0, & x \in \partial \Omega, t \in(0, T), \\ u(x, 0)=u_{0}(x), & x \in \Omega\end{cases}
$$

Partition the domain $\Omega=\Omega_{1} \cup \Omega_{2}$.

 Define for $i \in\{0,1\}$,

Schwarz Waveform Relaxation

We will solve the 1D heat equation

$$
\begin{cases}u_{t}(x, t)=u_{x x}(x, t), & (x, t) \in \Omega \times(0, T), \\ u(x, t)=0, & x \in \partial \Omega, t \in(0, T), \\ u(x, 0)=u_{0}(x), & x \in \Omega .\end{cases}
$$

Partition the domain $\Omega=\Omega_{1} \cup \Omega_{2}$.
Define for $i \in\{0,1\}$,

$$
\begin{cases}\partial_{t} u_{i}^{k+1}(x, t)=\partial_{x x} u_{i}^{k+1}(x, t) & (x, t) \in \Omega_{1} \times(0, T] \\ u_{i}^{k+1}(x, 0)=u_{0}(x) & x \in \Omega_{i} \\ u_{i}^{k+1}(x, t)=0 & x \in \partial \Omega, t \in(0, T] \\ u_{i}^{k+1}\left(\Gamma_{i}, t\right)=u_{1-i}^{k}\left(\Gamma_{i}, t\right) & t \in(0, T]\end{cases}
$$

Convergence of SWR

Goal: Compute the solution for the 1D heat equation with Dirichlet boundary conditions with $u_{0}=20$ and initial guess $u_{0}=0$.

On the right, first 6 iterations of SWR at time $T=0.5$.

Convergence is superlinear ${ }^{6}$

[^4]
Optimized Schwarz Waveform Relaxation

Recall: Schwarz wave relaxation is given for $i \in\{0,1\}$ by

$$
\begin{cases}\partial_{t} u_{i}^{k+1}(x, t)=\partial_{x x} u_{i}^{k+1}(x, t) & (x, t) \in \Omega_{1} \times(0, T] \\ u_{i}^{k+1}(x, 0)=u_{0}(x) & x \in \Omega_{i} \\ u_{i}^{k+1}(x, t)=0 & x \in \partial \Omega, t \in(0, T] \\ u_{i}^{k+1}\left(\Gamma_{i}, t\right)=u_{1-i}^{k}\left(\Gamma_{i}, t\right) & t \in(0, T]\end{cases}
$$

Goal: Do SWR without overlap.

$$
\begin{cases}\partial_{t} u_{i}^{k+1}(x, t)=\partial_{x x} u_{i}^{k+1}(x, t) & (x, t) \in \Omega_{1} \times(0, T] \\ u_{i}^{k+1}(x, 0)=u_{0}(x) & x \in \Omega_{i} \\ u_{i}^{k+1}(x, t)=0 & x \in \partial \Omega, t \in(0, T] \\ \left(\partial_{x}+p\right) u_{i}^{k+1}\left(\Gamma_{i}, t\right)=\left(\partial_{x}+p\right) u_{1-i}^{k}\left(\Gamma_{i}, t\right) & t \in(0, T]\end{cases}
$$

Solution: Change transmission conditions to Robin type and optimize for $p_{\text {s }}$

Optimizing Optimized Schwarz Waveform Relaxation

Summary

- Schwarz Wave Relaxation allows parallelism in time by cutting the spatial domain in two (or more) subdomains
- Schwarz Wave Relaxation has superlinear convergence
- Optimized Schwarz Waveform Relaxation allows to have no overlap between domains.

References

- The waveform relaxation method for time-domain analysis of large scale integrated circuits (1983)
E. Lelarasmee, A. E. Ruehli, and A. L. Sangiovanni-Vincentelli.
- Overlapping Schwarz of linear and non-linear Parabolic problems (1996) M. J. Gander
- Dirichlet-Neumann and Neumann-Neumann waveform relaxation algorithms for parabolic problems (2013)
M. J. Gander, F. Kwok, B. C. Mandal
- Work by M. Gander, L. Halpern, V. Martin, F. Nataf.

ParaExp

ParaExp

Introduced by Gander and Güttel in 2013. Let $A \in \mathbb{R}^{n \times n}$ and f a non-linear function.

$$
u^{\prime}(t)=A u(t)+f(t), \quad t \in(0, T), \quad u(0)=u_{0}
$$

Observation

A homogenous problem can be integrated much faster than an inhomogenous problem.
Separate $u=v+w$, where

$$
\begin{gathered}
v^{\prime}(t)=A v(t), \quad v(0)=u_{0} \\
w^{\prime}(t)=A w(t)+f(t), \quad w(0)=0
\end{gathered}
$$

ParaExp - illustration

Figure: Illustration of ParaExp from the original article (Gander, Güttel, 2013)
(1) On $\left[T_{n}, T_{n+1}\right]$: Solve with serial integrator
(2) On $\left[T_{n}, T\right]$: Solve with near optimal exponential integrator
(3) Get the final solution by superposition of solutions

Fast computation of matrix exponentials

Question: If A is very big, how to compute efficiently $\exp (t A)$?
Idea: Compute $\exp (t A) v$ directly for some initial condition v using Krylov methods.
(1) Generate the Krylov space $\mathcal{K}_{m}=\operatorname{span}\left\{v, A v, \ldots, A^{m-1} v\right\}$.

- Use the Arnoldi method.
(2) Get an orthonormal basis V_{m} of \mathcal{K}_{m}.
- Use a modified Gram-Schmidt process.
(3) Compute H_{m} the projection of A on the space \mathcal{K}_{m} with respect to the basis V_{m}.
(9) Get the approximation $e^{t A} \approx \beta V_{m} e^{t H_{m}} e_{1}$ (good even for small m)
- Apply traditional techniques to compute $e^{t H_{m}} e_{1}$.

Fast computation of matrix exponentials

Question: If A is very big, how to compute efficiently $\exp (t A)$?
Idea: Compute $\exp (t A) v$ directly for some initial condition v using Krylov methods.
(1) Generate the Krylov space $\mathcal{K}_{m}=\operatorname{span}\left\{v, A v, \ldots, A^{m-1} v\right\}$.

- Use the Arnoldi method.
(2) Get an orthonormal basis V_{m} of \mathcal{K}_{m}.
- Use a modified Gram-Schmidt process.
(3) Compute H_{m} the projection of A on the space \mathcal{K}_{m} with respect to the basis V_{m}.
- The matrix H_{m} is upper Hessenberg and verifies $H_{m}=V_{m}^{\top} A V_{m}$.
(9) Get the approximation $e^{t A} \approx \beta V_{m} e^{t H_{m}} e_{1}$ (good even for small m)
- Apply traditional techniques to compute $e^{t H_{m}} e_{1}$.

What about non-linear problems?

Consider the non-linear problem, with $B: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ a non-linear application,

$$
u^{\prime}(t)=A u(t)+B(u(t))+f(t), t \in[0, T], \quad u(0)=u_{0}
$$

Problem: Applying the splitting $u=v+w$ does not verify the original equation.

$$
\begin{array}{ll}
v^{\prime}(t)=A v(t), & v(0)=u_{0} \\
w^{\prime}(t)=A w(t)+B(w(t))+f(t), & w(0)=0
\end{array}
$$

Non-linear ParaExp

Consider the following iterative method: for $k=0$ initialize

$$
u_{n}^{0}=w_{n}^{0}=0, \quad n=0, \ldots, N_{t}-1
$$

For $k=1,2, \ldots$ solve the homogenous problems

$$
\begin{array}{ll}
\left(w_{n}^{k}\right)^{\prime}(t)=A w_{n}^{k}(t) & t \in\left[T_{n-1}, T_{n}\right] \\
w_{1}^{k}\left(T_{0}\right)=u_{0}, w_{n}^{k}(0)=u_{n-1}^{k-1}(0)-\sum_{j=1}^{n-1} w_{j}^{k-1}(0) &
\end{array}
$$

and then solve the non-homogenous problem

$$
\begin{aligned}
\left(u_{n}^{k}\right)^{\prime}(t) & =A u_{n}^{k}(t)+B\left(u_{n}^{k}(t)\right)+f(t), & t \in\left[T_{n-1}, T_{n}\right] \\
u_{n}^{k}(0) & =\sum_{j=1}^{n} w_{j}^{k}\left(T_{n-1}\right) &
\end{aligned}
$$

Non-linear ParaExp equivalence with Parareal

Theorem [Theorem 2, Gander, Güttel, Petcu, 2018]

Let the coarse propagator $G\left(U_{n}\right)$ solve the linear problem

$$
u^{\prime}(t)=A u(t), \quad t \in\left(T_{n}, T_{n+1}\right), \quad u(0)=U_{n}
$$

and the fine propagator $F\left(U_{n}\right)$ solve the non-linear problem

$$
u^{\prime}(t)=A u(t)+B(u(t))+f(t), \quad t \in\left(T_{n}, T_{n+1}\right), \quad u(0)=U_{n}
$$

Then the Parareal iteration computed with those operators is equivalent to the non-linear ParaExp algorithm.

Summary

- Direct method for linear problems
- Acceleration of computation of the exponential using Krylov methods
- Iterative method for non-linear problems
- Equivalence of non-linear ParaExp with Parareal

References

- ParaExp: a Parallel Integrator for Linear Initial-Value Problems (2013) M. J. Gander, S. Güttel
- A Nonlinear ParaExp Algorithm (2018) M. J. Gander, S. Güttel, M. Petcu
- Analysis of Some Krylov Subspace Approximations to the Matrix Exponential (1992) Y. Saad

[^0]: ${ }^{2}$ Falgout, Friedhoff, Kolev, MacLachlan, Schroder (2014)

[^1]: ${ }^{3}$ Dobrev, Kolev, Petersson, Schroder (2017)

[^2]: ${ }^{3}$ Dobrev, Kolev, Petersson, Schroder (2017)

[^3]: ${ }^{5}$ Gander, Neumüller (2016)

[^4]: ${ }^{6}$ M. J. Gander (1997, PhD thesis)

