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Introduction to Krylov solvers

Krylov solvers ? A mathematical setting describing several iterative
methods.

Define linear system of equations with first guess x0 ∈ Rn

Ax = b, A ∈ Rn×n, b ∈ Rn

Seek solution in the Krylov subspace, r0 = b − Ax0

Kk (A, r0) = x0 + Span⟨r0,Ar0, · · · ,Ak−1r0⟩



Designing a Krylov solver

For all k ≤ n, find xk ∈ Kk (A, r0) that minimizes some measure of
the error x − xk

Example : Choose xk = argminy∈Kk (A,r0 ) ∥x − y∥2

Reformulate with the residual rk = b − Axk :

xk = argmin
y∈Kk (A,r0 )

∥x − y∥2 ⇐⇒ rk ⊥ AKk (A, r0)

xk

x

Kk (A, r0)

(a) Some Krylov design

rk

AKk(A
, r0)

(b) Equivalent formulation



Mathematical formulation

We’ve designed a Krylov solver. An iterative method producing (xk)k
s.t :

1. ∀k, xk ∈ Kk (A, r0) (subspace condition)
2. ∀k, rk ⊥ Lk , with Lk some k-dimensional vector subspace

(Petrov-Galerkin condition)

Examples [6] :
▶ CG : rk ⊥ Kk (A, r0) ⇐⇒ xk = argminy∈Kk (A,r0 ) ∥x − y∥A
▶ GMRES :

rk ⊥ AKk (A, r0) ⇐⇒ xk = argminy∈Kk (A,r0 ) ∥b − Ay∥2



A problem arises

How to enforce the Petrov-Galerkin condition ?

PLk (b − Axk) = 0 ⇐⇒ (PLk A)xk = (PLk b) (xk ∈ Kk (A, r0))

Usually requires access to bases of Lk and of Kk (A, r0). For
numerical stability, these bases should be well conditioned. Not the
case of {r0,Ar0, · · ·Ak−1r0} !

=⇒ Proceed with a subsequent orthonormalization process of these
bases.

Dilemma : often the most expensive part of the solver (typical
asymptotic cost is O(nk2) flops)



Introduction to randomization

Randomization ? A dimension reduction technique that
approximates geometry of a vector-subspaceVk ⊂ Rn, k ≪ n.

We say that a linear mapping Ω : Rn → Rℓ is an 𝜖-embedding ofVk if
and only if

∀x ∈ Vk , (1 − 𝜖)∥x∥22 ≤ ∥Ωx∥22 ≤ (1 + 𝜖)∥x∥
2
2 (1)

see [8]. Due to parallelogram identity, eq. (1) is equivalent to

∀x, y ∈ Vk , |⟨Ωx,Ωy⟩ − ⟨x, y⟩| ≤ 𝜖 ∥x∥2∥y∥2

Typical 𝜖 = 1
2 . Designed to preserve orders of magnitude, not to be a

fine approximation.



An analogy with projections (1)

(a) Enough to guess geometry... (b) ...but can be misleading !

Figure: Good and bad projections



An analogy with projections (2)

Figure: A set of high-dimensional vectors projected in R3 (diadema urchin)



Oblivious subspace embeddings

Oblivious subspace embedding with parameters 𝜖, k, 𝛿 : a linear
mapping3 Ω : Rn → Rℓ such that, for any k-dimensional subspaceVk ,
it is an 𝜖-embedding ofVk with probability at least 1 − 𝛿 (see [8]).

Examples :
▶ Gaussian OSE : Independent Ωi ,j ∼ N(0,

√
ℓ
−1), 1 ≤ j ≤ ℓ.

Dense matrix.
▶ SRHT OSE : Independent ℓ rows sampling of HD where

H ∈ Rn×n is Hadamard transform and D is random cheap rotation.
Fast transform, but not suited for distributed computing [9]

ℓ : the sampling size. The more successful and fine we want Ω, the
greater the sampling size. Typical ℓ = 5k.

3The theory is simplified here



Some new notions
Let Ω : Rn → Rℓ an 𝜖-embedding for vector subspaceVk . Let
Vp ⊂ Vk a vector subspace.
▶ We say that v1, · · · , vp ∈ Vp are a sketch orthonormal basis of
Vp if and only if they are a basis ofVp and verify

∀i, j ∈ {1, · · · p}, ⟨Ωvi ,Ωvj⟩ = 𝛿i ,j

(
Cond(Vp) ≤

√︂
1 + 𝜖
1 − 𝜖

)
▶ We say that z ⊥Ω Vp if and only if

∀x ∈ Vp, ⟨Ωz,Ωx⟩ = 0

▶ We define the sketch orthogonal projector fromVk ontoVp as

PΩ
Vp

:


Vk → Vp

x ↦→ argmin
y∈Vp

∥Ω(x − y)∥22



Problem identified

Replace the orthogonalization step of Krylov solvers by
sketch-orthogonalization step ?

What has been done :
▶ Randomized Gram-Schmidt [2] and block version [1] : Half the

flops of modified Gram-Schmidt (MGS), with similar stability.
▶ Applied to GMRES [2], same convergence rate, stable.
▶ Applied to eigenvalue solvers [5]

The case rk ⊥Ω AKk (A, r0) is now well documented. What about
rk ⊥Ω Kk (A, r0)?

Considered in [3, 4], but still no error minimizing characterization.



ROPMs

Randomized Orthogonal Projection Method over the Krylov subspace
(ROPM) : an iterative algorithm producing (xk)k s.t :

1. ∀k, xk ∈ Kk (A, r0) (subspace condition)
2. ∀k, rk ⊥Ω Kk (A, r0) (sketched Petrov-Galerkin condition)

xk

x

Kk (A, r0)

(a) In Rn...

Ωrk

ΩKk (A, r0)

(b) ...embedded in Rℓ



RFOM
The following algorithm is an ROPM.

Input: Matrix A ∈ Rn×n, vector b ∈ Rn, 𝜖-embedding Ω ∈ Rℓ×n

of Kkmax , kmax < ℓ ≪ n, first guess x0
Output: Approximation xk ∈ Kk (A, r0) of solution to Ax = b.

1 r0 ← b − Ax0
2 Compute Ωr0
3 v1 ← ∥Ωr0∥−1r0
4 Compute/deduce Ωv1
5 while k ≤ kmax and ∥Ωrk ∥ > [ do
6 w ← Avk
7 Compute Ωw
8 (hi ,k)1≤i≤k ← (ΩVk)tΩw where Vk is the matrix formed by

v1, · · · vk
9 w ← w − Vk (hi ,k)1≤i≤k

10 Compute/deduce ∥Ωw ∥
11 hk+1,k ← ∥Ωw ∥
12 w ← h−1

k+1,kw
13 vk+1 ← w
14 Compute/deduce Ωvk+1
15 xk ← x0 + H−1

k (ΩVk)tΩr0, where Hk = (hi ,j)1≤i≤k
1≤j≤k

16 k ← k + 1
17 return xk

Algorithm 0: RFOM, a.k.a Randomized Arnoldi



Is the sketched Petrov-Galerkin condition met?

This algorithm builds sketch orthonormal vectors v1, v2 · · · s.t:

∀k, hk+1,kvk+1 = Avk − ⟨ΩAvk ,Ωv1⟩v1 − · · · ⟨ΩAvk ,Ωvk⟩

We get the randomized Arnoldi relation :

∀k, AVk = Vk+1Hk+1,k , (ΩVk)tΩVk = Ik , Hk+1,k = (hi ,j)1≤i≤k+1
1≤j≤k

Using the sketch orthogonality, we get Hk = (ΩVk)tΩAVk . Finally,

rk ⊥Ω Kk (A, r0) ⇐⇒ (ΩVk)tΩrk = 0k ⇐⇒ xk = x0 + H−1
k (ΩVk)tΩr0



Some testing (1)
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Figure: Easy problem

This is the desired behavior.



Some testing (2)
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(a) Reasonably difficult
system, Cond(A) ≈ 4000
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(b) Harder system,
Cond(P−1A) ≈ 105

10-8

10-6

10-4

10-2

100

102

104

 100  200  300  400  500

A
-n

or
m

 o
f e

rr
or

iteration

ROPM 2500
OPM

El3D

(c) Even harder,
Cond(P−1A) ≈ 109

Figure: Convergence of ROPM

Similar convergence rate overall.

Apparition of spikes of the randomized error. Are they random ?



Straightforward bound

Using the 𝜖-embedding property straightforwardly :

Proposition
Let Ω ∈ Rℓ×n be an 𝜖-embedding of Kk+1 + Span⟨x⟩, with
𝜖 ≤ cond(A)− 1

2 . Assume that A is positive-definite. Then the estimate
xk ∈ Kk produced by ROPM and x̆k ∈ Kk produced by standard OPM
satisfy

∥x − xk ∥A ≤
1 + 𝜖 cond(A) 1

2

1 − 𝜖 cond(A) 1
2
∥x − x̆k ∥A. (2)

Pessimistic bound. Not well-defined for ill-conditioned systems.
Doesn’t describe the spikes.



Isolating the spikes
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Figure: Spike study

Spikes seem related to the properties of the system after all.



Our main contribution

Theorem
Assume that A is positive-definite. We have

∥x − xk ∥A ≤
(
1 + 𝛼2

k 𝛽
2
k

) 1
2 ∥x − x̆k ∥A,

where xk ∈ Kk and x̆k ∈ Kk are the sketched and the classical
Petrov-Galerkin projections, respectively, and

𝛼k :=
⟨x − x̆k−1,PΩ

Kk
Av̆k⟩

⟨x − x̆k−1,PKk Av̆k⟩
,

𝛽k := ∥A− 1
2PΩ
Kk

v̆k+1∥⟨v̆k+1,Av̆k⟩
⟨v̆k , x̆k⟩
∥x − x̆k ∥A

,

and where v̆k is a unit vector spanning the range of (I − PKk−1)PKk .



Numerical testing
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Figure: RFOM convergence for the shifted Si41Ge41H72 system.

Fine bound. Truthful to the sppikes.



Indirect bound
Proposition
If xk ∈ Kk satisfies the sketched Petrov-Galerkin condition, and if x̆k
satisfies the Petrov-Galerkin condition,

∥rk ∥2 ≤ ∥ r̆k ∥2 + ∥r0∥
[
|s̆k,1 | +

√︂
1 + 𝜖
1 − 𝜖 |sk,1 |

]
. (4)

where sk,1 (resp. s̆k,1) denote the product of hk+1,k and the bottom left
corner of H−1

k (resp ...)
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Figure: Indirect residual bound



Future developement
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Is there a synthetic bound, only featuring spectral properties of
Hessenberg matrices ?

Deflation of the bad Ritz vectors ?



Short recurrences
The randomized Arnoldi relation for symmetric system A is not
symmetric anymore.

H̆k = V̆ t
kAV̆k symmetric, but (ΩVk)tΩAVk ≠ (ΩAVk)tΩVk

Short recurrence is lost
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Figure: Distribution of Hk (noise above the superdiagonal)



Noise seems Gaussian

Experimentally, Gaussian distributed noise of great magnitude above
the superdiagonal.

Empirical implications : not compressible, stable by isometric
transformations.

Randomization extended to CG is not trivial.

What happens if we use it anyway ?



arCG

Input: A ∈ Rn×n an SPD matrix, b ∈ Rn, [ ∈ R+∗, kmax ∈ N∗,
x0 ∈ Rn, Ω an 𝜖-embedding of Kkmax

Output: xk an estimate of the solution of Ax = b
1 r0 ← b − Ax0
2 p0 ← r0
3 Compute Ωr0
4 while ∥Ωrk ∥ ≥ [ ∥b∥ and k ≤ kmax do
5 if k ≥ 1 then
6 𝛿k ← ∥Ωrk ∥2

∥Ωrk−1 ∥2

7 pk ← rk + 𝛿pk−1

8 Compute Apk ,ΩApk ,Ωpk

9 𝛾k ← − ∥Ωrk ∥2
⟨ΩApk ,Ωpk ⟩

10 xk+1 ← xk + 𝛾kpk
11 rk+1 ← rk − 𝛾kApk
12 Compute Ωrk+1
13 k ← k + 1
14 Return xk

Algorithm 0: arCG



An indirect bound

arCG only imposes local orthogonality between rk and Kk (A, r0).

Proposition
Assume an 𝜖-embedding property applies to the coefficients 𝛾k and 𝛿k
computed by arCG. Let k, d ∈ N such that k + d ≤ kmax. Then

∥x − xk ∥2A − ∥x − xk+d ∥2A ≤
1 + 𝜖 + 2𝜖

1 − 𝜖

k+d−1∑︁
j=k
|𝛾j |∥Ωpj ∥22. (5)

Indirect bound of the error if we know the algorithm has converged,
same as [7]



Experimental testing of arCG
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(c) Well-conditioned,
smooth spectral decay
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(d) Ill-conditioned, smooth
spectral decay
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Figure: Convergence of arCG



Conclusion

▶ ROPMs should be considered for solving very ill-conditioned
problems that disqualify CG

▶ Short recurrence sketched orthonormalization is not trivial
▶ arCG should be considered for solving high dimensional easy

problems
▶ Check our preprint!

https://arxiv.org/abs/2302.07466


Acknowledgements

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement No 810367).



Bibliography I

[1] Oleg Balabanov and Laura Grigori. “Randomized block
Gram-Schmidt process for solution of linear systems and
eigenvalue problems”. In: arXiv preprint arXiv:2111.14641
(2021).

[2] Oleg Balabanov and Laura Grigori. “Randomized
Gram–Schmidt Process with Application to GMRES”. In: SIAM
Journal on Scientific Computing 44.3 (2022), A1450–A1474.

[3] Alice Cortinovis, Daniel Kressner, and Yuji Nakatsukasa.
“Speeding up Krylov subspace methods for computing f (A) b
via randomization”. In: arXiv preprint arXiv:2212.12758 (2022).

[4] Stefan Güttel and Marcel Schweitzer. “Randomized sketching
for Krylov approximations of large-scale matrix functions”. In:
arXiv preprint arXiv:2208.11447 (2022).



Bibliography II

[5] Yuji Nakatsukasa and Joel A Tropp. “Fast & accurate
randomized algorithms for linear systems and eigenvalue
problems”. In: arXiv preprint arXiv:2111.00113 (2021).

[6] Yousef Saad. Iterative methods for sparse linear systems. SIAM,
2003.

[7] Zdeněk Strakoš and Petr Tichỳ. “On error estimation in the
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