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Exercise session related to this mini-course

Codes and exercise sheet available at https://github.com/vanzantom/

Contact: tommaso.vanzan@epfl.ch
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Schwarz methods



Origins of DD methods: the alternating Schwarz method

Introduced by Schwarz in 1870 to improve Riemann’s proof

that
∫

Ω |∇u|
2 admits a minimizer on arbitrary domains of

the form Ω = Ω1 ∪ Ω2.

Ω1 Ω2Γ1Γ2 −∆u = f in Ω,

u = g on ∂Ω.

Initial guesses u0
1 and u0

2 .

−∆un1 = f in Ω1, −∆un2 = f in Ω2,

un1 = g on ∂Ω ∩ Ω1, un2 = g on ∂Ω ∩ Ω2,

un1 = un−1
2 on Γ1, un2 = un1 on Γ2.
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Error equation

Let {un1}n≥1, {un2}n≥1 be sequences of approximations generated by the Schwarz (or any

stationary) method.

To study the convergence of un1 → u|Ω1
and un2 → u|Ω2

is sufficient to analyze how the

quantities

en1 := u|Ω1
− un1 , en2 := u|Ω2

− un2 ,

converge to zero enj → 0, j = 1, 2.

In our setting, due to linearity, enj satisfy

−∆en1 = 0 in Ω1, −∆en2 = 0 in Ω2,

en1 = 0 on ∂Ω ∩ Ω1, en2 = 0 on ∂Ω ∩ Ω2,

en1 = en−1
2 on Γ1, en2 = en1 on Γ2.
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The alternating Schwarz method: 1D example

| |
a b

||
Γ1Γ2

Ω1

Ω2
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Ω2

Consider ∆e = 0, e(a) = e(b) = 0, and start with e0
1 = e0

2 = 1. Solution is e = 0.
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The alternating Schwarz method: 1D example

| |
a b

||
Γ1Γ2

Ω1

Ω2

Consider ∆e = 0, e(a) = e(b) = 0, and start with e0
1 = e0

2 = 1. Solution is e = 0.

| |
a b

||
Γ1Γ2

e2
1

|
e2

2

In the limit en1 and en2 tend to zero as n→∞.
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The parallel Schwarz method: 1D example

A parallel version was introduced by P.L. Lions in 1989.

−∆un1 = f in Ω1, −∆un2 = f in Ω2,

un1 = g on ∂Ω ∩ Ω1, un2 = g on ∂Ω ∩ Ω2,

un1 = un−1
2 on Γ1, un2 = un−1

1 on Γ2.
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The parallel Schwarz method: 1D example

Error equation

−∆en1 = 0 in Ω1, −∆en2 = 0 in Ω2,

en1 = 0 on ∂Ω ∩ Ω1, en2 = 0 on ∂Ω ∩ Ω2,

en1 = en−1
2 on Γ1, en2 = en−1

1 on Γ2.

| |
a b

||
Γ1Γ2

e3
1

|
e3

2
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Convergence analysis in 1D

Define vn2,1 := en2 (Γ1) and vn1,2 := en1 (Γ2).

Then, en1 (x) = vn−1
2,1

x−a
Γ1−a and en2 (x) = vn−1

1,2
b−x
b−Γ2

.

Further, vn1,2 := en1 (Γ2) = vn−1
2,1

Γ2 − a

Γ1 − a
= en−1

2 (Γ1)
Γ2 − a

Γ1 − a
= vn−2

1,2

b − Γ1

b − Γ2

Γ2 − a

Γ1 − a︸ ︷︷ ︸
ρ

.

=⇒ vn1,2 = ρvn−2
1,2 with ρ < 1 =⇒ the Schwarz iterates converge to zero!

| |
a b

||
Γ1Γ2

• Conclusion: the larger the overlap (Γ1 − Γ2) the fastest is the contraction!

• Remark: The analysis holds for any right hand side f and boundary condition g

(sufficient to look at the error equation enj := u|Ωj
− unj .)
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Convergence analysis in 2D in a simplified geometry

x

y
π

•

••

••

•

•

•

Ω1

Ω2

Γ2 Γ1

−a b

δ0

−∆en1 = 0 in Ω1, −∆en2 = 0 in Ω2,

en1 = 0 on ∂Ω ∩ Ω1, en2 = 0 on ∂Ω ∩ Ω2,

en1 = en−1
2 on Γ1, en2 = en−1

1 on Γ2.

• Expand solutions in Fourier sine series: enj (x , y) =
∑∞

j=1 ê
n
j (x , k) sin(kπy).

• Insert expressions into −∆e = 0, we get
∑∞

j=1

(
∂xx − k2

)
ênj (x , k) sin(kπy) = 0.

• Due to orthogonality, we can analyze the Schwarz algorithm frequency by frequency.

Remark: Same technique can be used to analyze the convergence for specific decompositions

into many subdomains.

(Chaouqui et al, On the scalability of classical one-level domain decomposition methods, 2018). 9



Convergence analysis in 2D in a simplified geometry - II

(
∂xx − k2

)
ên1 (x , k) = 0, x ∈ (−a, δ),

(
∂xx − k2

)
ên2 (x , k) = 0, x ∈ (0, b), (1)

ên1 (−a, k) = 0, ên2 (b, k) = 0, (2)

ên1 (δ, k) = ên−1
2 (δ, k), ên2 (0, k) = ên−1

1 (0, k). (3)

Using (1) and (2), subdomain solutions are

ên1 (x , k) = An(k) sinh(πk(a + x)) and ên2 (x , k) = Bn(k) sinh(πk(b − x)).

Using (3), we obtain

An(k) =
sin(kπa)

sinh(kπb)

sinh(kπ(b − δ))

sinh(kπ(a + δ)︸ ︷︷ ︸
ρ(k)

An−2(k).
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Remarks on the convergence of the Schwarz method

ρ(k, δ) :=
sin(kπa)

sinh(kπb)

sinh(kπ(b − δ))

sinh(kπ(a + δ)
.

• The larger is δ the faster is the

convergence.

• ρ(k , 0) = 1, ∀k =⇒ the Schwarz method

does not convergence without overlap!

• the Schwarz method is an excellent

smoother.
0 5 10 15 20

k
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(k
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Visualization of the smoothing property
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Generalization to many subdomains and algebraic formulation

Finite element mesh of size Nh.

Ω = ∪Nj=1Ωj , Ωj are overlapping subdomains.

Rj are restriction operators to Ωj (imagine boolean matrices in RNh,i×Nh . R>j are prolongation

operators.

R̃j are weighted restriction operators such that
∑N

j=1 R̃
>
j Rj = I .

Aj = RjAR
>
j (local stiffness matrices)

• The discrete equivalent of the parallel Schwarz method is the Restricted Additive Schwarz

method (Cai, Sarkis, 1999)

un = un−1 +
N∑
j=1

R̃>j A−1
j Rj(f − Aun−1), Preconditioner is M−1

RAS :=
N∑
j=1

R̃>j A−1
j Rj

• Additive Schwarz preconditioner (Dryja, Widlund, 1987): M−1
AS :=

∑N
j=1 R

>
j A−1

j Rj .
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Interpret RAS as the discretization of the parallel Schwarz method

The RAS method: a consistent discretization of the PSM to solve Au = f .

un = un−1 +
∑N

j=1 R̃
>
j A−1

j Rj

(
f − Aun−1

)
=

∑N
j=1 R̃

>
j Rjun−1 +

∑N
j=1 R̃

>
j A−1

j Rj

(
f − Aun−1

)
(
∑N

j=1 R̃
>
j Rj = I )

=
∑N

j=1 R̃
>
j A−1

j

(
AjRjun−1 + Rj

(
f − Aun−1

)) (
A−1
j Aj = I

)
=

∑N
j=1 R̃

>
j A−1

j Rj

(
f − A

(
I − R>j Rj

)
un−1

)
(Aj = RjAR

>
j )

Assuming A = (1/h2)diag(−1, 2,−1)

R1un−1 = (un−1
1 , un−1

2 , un−1
3 , un−1

4 )>.

R>1 R1un−1 = (un−1
1 , un−1

2 , un−1
3 , un−1

4 , 0, 0)>.

(I − R>1 R1)un−1 = (0, 0, 0, 0, un−1
5 , un−1

6 )>.

A(I − R>1 R1)un−1 = (0, 0, 0,−un−1
5 /h2, x , x)>.

R1(f − A(I − R>1 R1))un−1 = (f1, f2, f3, f4 + un−1
5 /h2)>.

| | | | | | |
u0 u1 u2 u3 u4 u5 u6

Ω1
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Comparison between RAS and AS

Property AS RAS

Works as stationary method 1

Preserves symmetry

Condition number estimates

Convergence speed measured in # It.

1Unless a damping parameter is suitable tuned
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Convergence plots

5 10 15 20 25 30 35 40

Iterations

10
-10
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0

Decay of errors/residuals

RAS

AS

RAS+GMRES

AS+CG
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Interlude on a condition number/eigenvalue distributions description of conver-

gence

Contrary to common belief, neither a small condition number nor clustered eigenvalues

guarantee fast convergence:

CG: ‖u?−uk‖A ≤ min
p∈Pk :p(0)=1

max
λj∈σ(A)

|p(λj)|‖u?−u0‖A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

‖u?−u0‖A.

• First CG bound is sharp (∃ a u0 such that bound is attained).

• Second bound is not sharp and sometimes even useless. (E.g. N small).

• Matrices with same condition number may exhibit very different convergence.

• Having several clustered eigenvalues is not equivalent to have a single eigenvalue.

• Convergence behaviour depends both on A and on u0.

Extensive discussion on the influence of eigenvalues distribution and condition number

on CG/GMRES convergence in Section 5.6/5.7 in [Liesel, Strakos, 2012]. 17



Link between stationary methods and preconditioners

Theorem (Stationary methods and preconditioned-Krylov methods)

Consider a splitting A = M − N with M invertible, the corresponding stationary

method, and a Krylov method minimizing the residual applied to the preconditioned

system M−1Au = M−1f. Define the corresponding preconditioned residuals as

rnstat := M−1f −M−1Aun
stat and rnkry := M−1f −M−1Aun

kry.

Then we have that

‖rnkry‖2 ≤ ‖rnstat‖2 for any n = 0, 1, 2, . . .

A Krylov method minimizing the residual applied to M−1Au = M−1f can never

perform more iterations than a (convergent) stationary iterative method based on M.
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Nonoverlapping/Substructuring

methods



General idea behind nonoverlapping methods

Let Ω = Ω1 ∪ Ω2, with Γ = ∂Ω1 ∩ ∂Ω2.

The partial differential equation

−∆u = f in Ω,

u = g on ∂Ω,

can be equivalently be formulated as

−∆u1 = f in Ω1,

−∆u2 = f in Ω2,

u1 = g on ∂Ω ∩ Ω1,

u2 = g on ∂Ω ∩ Ω2,

u1 = u2 on Γ,

∂u1

∂n1
=
∂u2

∂n1
on Γ,

n1 being the outward normal vector on Γ from Ω1.

•

••

•

ΓΩ1 Ω2

19



Dirichlet-Neumann method (Bjørstad & Widlund 1986)

Start from u0
Γ.

−∆un1 = f in Ω1, −∆un2 = f in Ω2,

un1 = g on ∂Ω ∩ Ω1, un2 = g on ∂Ω ∩ Ω2,

un1 = un−1
Γ on Γ, ∂xu

n
2 = ∂xu

n
1 on Γ.

Update unΓ = θun−1
Γ +(1− θ)un2,|Γ, θ ∈ [0, 1).

•

••

•

ΓΩ1 Ω2
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Dirichlet-Neumann for a symmetric 1D problem: θ = 1/2.

Error equation

−∆en1 = 0 in Ω1, −∆en2 = 0 in Ω2,

en1 = 0 on ∂Ω ∩ Ω1, en2 = 0 on ∂Ω ∩ Ω2,

en1 = en−1
Γ on Γ, ∂xe

n
2 = ∂xe

n−1
1 on Γ.

Update enΓ = 1
2e

n−1
Γ + 1

2e
n
2,|Γ.

| |
a b

|
Γ

•
e0

Γ
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n
2,|Γ.

| |
a b

|
Γ

•
e0

Γ

e1
1 e1

Γ

•

e1
2•

e1
Γ = 1

2e
0
Γ + 1

2e
1
2,|Γ = 0 =⇒ the Dirichlet-Neumann method converges in two iterations!
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Dirichlet-Neumann for an unsymmetric 1D problem: θ = 1/2.

−∆en1 = 0 in Ω1, −∆en2 = 0 in Ω2,

en1 = 0 on ∂Ω ∩ Ω1, en2 = 0 on ∂Ω ∩ Ω2,

en1 = en−1
Γ on Γ, ∂xe

n
2 = ∂xe

n−1
1 on Γ.

Update enΓ =
1

2
en−1

Γ +
1

2
en2,|Γ.

| |
a b

|
Γ

•
e0

Γ

e1
1

e1
2

•

•
e1

Γ

e2
1
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Convergence analysis in 2D in a simplified geometry

Using Fourier analysis we get

ρ(k , θ, a, b) = θ − (1− θ)
tanh(kπb)

tanh(kπa)
.

π

•

••

•

Γ

Ω1

Ω2

−a b
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Remarks
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• If a = b, then ρ = 2θ − 1. Hence, convergence in two iterations if θ = 1
2 .

• It may diverge if θ is not chosen correctly.

• Convergence is sensible to asymmetry of the domain decomposition.

• If θ = 1
2 , high frequencies convergence very fast =⇒ good smoother!

• Not clear how to extend the method to many subdomains decompositions.
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Neumann-Neumann (Bourgat, Glowinski, LeTallec, Vidrascu 1989)

Start from u0
Γ.

−∆uni = f in Ωi , −∆ψn
i = 0 in Ω2,

uni = g on ∂Ω ∩ Ωi , ψn
i = 0 on ∂Ω ∩ Ω2,

uni = un−1
Γ on Γ, ∂niψ

n
i = ∂n1u

n
1 + ∂n2u

n
2 on Γ.

Update unΓ = un−1
Γ −θ

(
ψn

1,|Γ + ψn
2,|Γ

)
, θ ∈ [0, 1).

π

•

••

•

Γ

Ω1

Ω2

−a b 25



Neumann-Neumann for an unsymmetric 1D problem: θ = 1/4.

Error equation

∂xxe
n
i = 0 in Ωi , ∂xxψ

n
i = 0 in Ωi ,

eni = 0 on ∂Ω ∩ Ωi , ψn
i = 0 on ∂Ω ∩ Ωi ,

eni = en−1
Γ on Γ, ∂niψ

n
i = ∂n1e

n−1
1 + ∂n2e

n−1
2 on Γ.

Update enΓ = en−1
Γ − θ

(
ψn

1,|Γ + ψn
2,|Γ

)
.

| |
a b

|
Γ

•
e0

Γ
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Neumann-Neumann for an unsymmetric 1D problem: θ = 1/4.

Error equation

∂xxe
n
i = 0 in Ωi , ∂xxψ

n
i = 0 in Ωi ,

eni = 0 on ∂Ω ∩ Ωi , ψn
i = 0 on ∂Ω ∩ Ωi ,

eni = en−1
Γ on Γ, ∂niψ

n
i = ∂n1e

n−1
1 + ∂n2e

n−1
2 on Γ.

Update enΓ = en−1
Γ − θ

(
ψn

1,|Γ + ψn
2,|Γ

)
.

| |
a b

|
Γ

•
e0

Γ

e1
1 e1

2
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Neumann-Neumann for an unsymmetric 1D problem: θ = 1/4.

Error equation

∂xxe
n
i = 0 in Ωi , ∂xxψ

n
i = 0 in Ωi ,

eni = 0 on ∂Ω ∩ Ωi , ψn
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n
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1 + ∂n2e
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Neumann-Neumann for an unsymmetric 1D problem: θ = 1/4.

Error equation

∂xxe
n
i = 0 in Ωi , ∂xxψ

n
i = 0 in Ωi ,

eni = 0 on ∂Ω ∩ Ωi , ψn
i = 0 on ∂Ω ∩ Ωi ,

eni = en−1
Γ on Γ, ∂niψ

n
i = ∂n1e

n−1
1 + ∂n2e

n−1
2 on Γ.

Update enΓ = en−1
Γ − θ

(
ψn

1,|Γ + ψn
2,|Γ

)
.

| |
a b

|
Γ

•
e0

Γ

e1
1 e1

2
ψ1

1

ψ2
1

•e
1
Γ e2

2e2
1
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Convergence analysis in 2D in a simplified geometry

Using Fourier analysis,

ρ(k, θ, a, b) = 1− θ(tanh(kπa) + tanh(kπb))(coth(kπa) + coth(kπb)).

• If a = b, ρ = 1− 4θ, thus θ = 1
4 leads to convergence in two iterations!

• Choice of θ is very delicate if a� b or a� b.

• If θ = 1
4 , the Neumann-Neumann method is a good smoother.

• It may diverge for some values of θ!
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Origins of nonoverlapping/substructuring methods and algebraic counterparts

Substructuring methods date back to the works of Cross (1930) and Przemieniecki (1963).

Ω1 Ω2

ΓA11 0 A1Γ

0 A22 A2Γ

AΓ1 AΓ2 AΓΓ


u1

u2

uΓ

 =

f1

f2

fΓ


Eliminating via Schur complement the interior degrees of freedom u1, u2,

SuΓ = µ,

S = S1 + S2, with Sj = Aj
ΓΓ − AΓj(Ajj)

−1AjΓ,

µ = µ1 + µ2, µj = f j
Γ − Aj

ΓI

(
Aj

II

)−1

fj .

Remark: A “substructured” system can be obtained at the continuous level using the Steklov-Poincaré

operators. 28



Origins of nonoverlapping/substructuring methods and algebraic counterparts

Richardson iteration to solve SuΓ = µ,

un
Γ = un−1

Γ + P
(
µ− Sun−1

Γ

)
.

• Dirichlet-Neumann is equivalent to choose P = S−1
2

• Neumann-Neumann is equivalent to choose P = S−1
1 + S−1

2 .

Both preconditioners satisfy κ(PS) ≤ C , with C independent on h (see Toselli-Widlund,

Quarteroni-Valli).
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Algebraic formulation of the Dirichlet-Neumann method

A1
IIu

n+1
1 + A1

IΓun
Γ = f1, Dirichlet problem in Ω1,(

A2
II A2

IΓ

A2
ΓI A2

ΓΓ

)(
un+1

2

un+1
2,Γ

)
=

(
f2

f2
Γ + f1

Γ − A1
IΓun+1

1 − A1
ΓΓun

Γ

)
, Neumann problem in Ω2,

un+1
Γ = θun

Γ + (1− θ)un+1
2,Γ , Update step.

Eliminate un+1
1 in the rhs of the Neumann problem using the Dirichlet problem,

f2
Γ +f1

Γ−A1
IΓun+1

1 −A1
ΓΓun

Γ = f2
Γ +f1

Γ−A1
IΓ(A1

ΓΓ)−1f1−(A1
ΓΓun

Γ−A1
IΓ(A1

ΓΓ)−1A1
ΓIu

n
Γ) = f2

Γ +µ1−S1un
Γ.

Eliminate now un+1
2 in the lhs of the Neumann problem via Schur complement,

A2
ΓIu

n+1
2 + A2

ΓΓun+1
2,Γ = (A2

ΓΓ − A2
ΓI (A

2
II )
−1A2

IΓ)un+1
2,Γ + A2

ΓI (A
2
II )
−1f2 = S2un+1

2,Γ + A2
ΓI (A

2
II )
−1f2.

Thus,

S2un+1
2,Γ = µ− S1un

Γ,

which inserted into the update rule leads to

un
Γ = un−1

Γ + S−1
2

(
µ− Sun−1

Γ

)
. 30



Algebraic formulation of the Dirichlet-Neumann method

A1
IIu

n+1
1 + A1

IΓun
Γ = f1, Dirichlet problem in Ω1,(

A2
II A2

IΓ

A2
ΓI A2

ΓΓ

)(
un+1

2

un+1
2,Γ

)
=

(
f2

f2
Γ + f1

Γ − A1
IΓun+1

1 − A1
ΓΓun

Γ

)
, Neumann problem in Ω2,

un+1
Γ = θun

Γ + (1− θ)un+1
2,Γ , Update step.

Eliminate un+1
1 in the rhs of the Neumann problem using the Dirichlet problem,

f2
Γ +f1

Γ−A1
IΓun+1

1 −A1
ΓΓun

Γ = f2
Γ +f1

Γ−A1
IΓ(A1

ΓΓ)−1f1−(A1
ΓΓun

Γ−A1
IΓ(A1

ΓΓ)−1A1
ΓIu

n
Γ) = f2

Γ +µ1−S1un
Γ.

Eliminate now un+1
2 in the lhs of the Neumann problem via Schur complement,

A2
ΓIu

n+1
2 + A2

ΓΓun+1
2,Γ = (A2

ΓΓ − A2
ΓI (A

2
II )
−1A2

IΓ)un+1
2,Γ + A2

ΓI (A
2
II )
−1f2 = S2un+1

2,Γ + A2
ΓI (A

2
II )
−1f2.

Thus,

S2un+1
2,Γ = µ− S1un

Γ,

which inserted into the update rule leads to

un
Γ = un−1

Γ + S−1
2

(
µ− Sun−1

Γ

)
. 30



FETI (Finite Element Tearing and Interconnecting) (Farhat, Roux 1991)

FETI is similar to a Neumann-Neumann method, but the Dirichlet and Neumann solves are

inverted.

−∆uni = f in Ωi , −∆ψn
i = 0 in Ω2,

uni = g on ∂Ω ∩ Ωi , ψn
i = 0 on ∂Ω ∩ Ω2,

∂uni
∂ni

= (−1)1+iλn−1
i on Γ, ψn

i = un1 − un2 on Γ.

Update λn = λn−1−θ
(
ψn

1

∂n1
+

ψn
2

∂n2

)
, θ ∈ [0, 1).

=⇒ Exercise: study the convergence using Fourier analysis.
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FETI - Algebraic formulation


A1
II A1

IΓ 0 0 I

A1
ΓI A1

ΓΓ 0 0 0

0 0 A2
II A2

IΓ 0

0 0 A2
ΓI A2

ΓΓ 0

0 I 0 −I 0




u1
I

u1
Γ

u2
I

u2
Γ

λ

 =


f 1
I

f 1
Γ

f 2
I

f 2
Γ

0



Γ

Ω1 Ω2

•

•

•

•

•

•

Write system as

(
A B>

B 0

)(
u
λ

)
=

(
f
0

)
FETI corresponds to solve BA−1B>λ = µ with preconditioner M = BSB>, where S = S1 +S2.

At each Krylov iteration

• Multiplication by A−1 requires to solve two Neumann problems.

• Multiplication by S requires to solve two Dirichlet problems.
More details in Klawoon, FETI domain decomposition methods for second order partial

differential equations, 2006. 32



Dichotomy between overlapping and substructuring methods

!Nonoverlapping DD methods work on the substructured system SuΓ = µ.

!Overlapping DD methods act on the volume system Au = f .

Question: Can we formulate a substructured version of the parallel Schwarz method?

Remark: Only very few elements of un−1 are needed to compute un!

Figure 1: Only the DOFs on the blue lines are needed to compute the next iterate!

Define V as the space of DOFs on the blue lines and introduce the restriction/prolongation operators

R : V → V , P : V → V .

We only suppose

RP = IV and RM−1A = RM−1APR. 33
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Substructuring the RAS method I

Denote the linear operator of the RAS method with GRAS, i.e.

un = un−1 + M−1(f − Aun−1) =: GRAS(un−1) ∀n ∈ N∗.

Then given a v0 ∈ V , we introduce the substructured iterative method

vn = GSRAS(vn−1) where GSRAS(v) := RGRAS(Pv).

Question: How are the convergence of the RAS and SRAS method linked?

Theorem (Equivalence between RAS and SRAS)

Assume that the operators R and P satisfy the assumptions. Given an initial guess u0 ∈ V

and its substructured restriction v0 := Ru0 ∈ V , define the sequences {un} and {vn} such

that

un = GRAS(un−1), vn = GSRAS(vn−1).

Then, Run = vn for every n ≥ 1.
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Substructing the RAS method II

Fixed point equation: Asv = fs , where As = I − G .

Krylov acceleration is cheaper in a substructured form for Krylov methods that do not have

short recurrences (e.g. GMRES).

Less floating points operations.

Less likely to run into memory issues (possibilities to use larger restarting parameters).

New ideas and perspective to analyse two-level methods and derive coarse spaces23.

The substructured parallel Schwarz method can be defined at the continuous level.

Equivalence requires exact local solves.

2Ciaramella, V.,Substructured two-grid and multi-grid domain decomposition methods, Num. Alg.,

2022
3Ciaramella, V., Spectral coarse spaces for the substructured parallel Schwarz method, J. Sc. Comp.,

2023
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Numerical experiment

• −∆u = f , f = 1, Ω = (0, 1)2.

• Weak scaling experiment: 256× 256 nodes per subdomain. One subdomain per core.

• Experiments performed by Serge Van Criekingen, CNRS/IDRIS- Paris-Saclay.
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Scalability and coarse spaces



Strong vs weak scalability4

Definition

An algorithm is said to be strongly scalable if, for a fixed total problem size, the

elapsed time is inversely proportional to the number of cores.

Definition

An algorithm is said to be weakly scalable if, for a fixed problem size per core, the

elapsed time is constant.

4Introduction to domain decomposition methods, Dolean et al. 2015
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Strong vs weak scalability4

Definition

An algorithm is said to be strongly scalable if, for a fixed total problem size, the

elapsed time is inversely proportional to the number of subdomains.

Definition

An algorithm is said to be weakly scalable if, for a fixed problem size per subdomain,

the elapsed time is constant.

We may change core with subdomain.

• Strong scalability is not realistic to achieve.

• One-level domain decomposition methods are in general not weakly scalable.

4Introduction to domain decomposition methods, Dolean et al. 2015
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Domain decomposition methods are in general not weakly scalable

Convergence of the parallel Schwarz method applied to −∆u = f .
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Intuition behind the lack of scalability

Generally, 1L-domain decomposition methods suffer the presence of “floating

subdomain”.

A subdomain Ωj is said to be floating if ∂Ωj ∩ ∂Ω = ∅.
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Generally, 1L-domain decomposition methods suffer the presence of “floating

subdomain”.

A subdomain Ωj is said to be floating if ∂Ωj ∩ ∂Ω = ∅.
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1L DD method may be weakly scalable if special geometries are involved

Ω1
Ω2

Ω3

Ω4
Ω5

Ω6

Ω7

Ω8
F1

S1

F2

F3
S2

F4

S3

F5
S4

L̂ Ω1

2δ 2δL− 2δ

· · · · · · Ωj

2δ 2δL− 2δ

· · · · · · ΩN

2δ2δ L− 2δ

• Cancés, Maday, Stamm, Domain decomposition for implicit solvation models, 2013.

• Ciaramella, Gander, Analysis of the parallel Schwarz method for growing chains of fixed-sixed

subdomains: Part I-II-III, 2018.

• Chaouqui, Ciaramella, Gander, V., On the scalability of classical one-level domain decomposition

methods, 2018.

• Berrone, V., Weak scalability of domain decomposition methods for discrete fracture networks, 2023.
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Coarse corrections

Idea: introduce a second level.

Given iteration un:

rn = f − Aun.

rc = Rrn.

uc = A−1
c rc .

un = un + Puc .

Components:

• Coarse space Vc ⊂ V .

• Restriction operator R : V → Vc .

• Prolongator operator P : Vc → V .

• Coarse matrix Ac = RAP.

Coarse spaces can be constructed geometrically(see Hardik’s lecture tomorrow!) or spectrally. 41



Nicolaides coarse space 1987

Choose P = [ψ1, ψ2, . . . , ψN ] where ψj is a constant function over subdomain Ωj and zero

everywhere else.

N. subdomains 4 16 64 128

RAS+Nicolaides 8 26 52 57

Coarse problem couples all subdomains =⇒ inter-subdomains communication!
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A coarse space can provide much more than just scalability

Remarks:

• A coarse space can make the method nilpotent. Such coarse spaces are called complete5.

• A coarse space can make a DD method robust w.r.t. jumps in the diffusion coefficient. 67

5Gander, Bo, Complete, Optimal and Optimized Coarse Spaces for Additive Schwarz, DDXXIV, 2018
6Gander, Loneland, SHEM: an optimal coarse space for RAS and its multiscale approximation,

DDXXIII, 2016.
7Klawonn, Kuhn, Rheinbach, Adaptive coarse spaces for FETI-DP in three dimensions with

applications to heterogeneous diffusion problem, DDXXIII, 2016 43



How to build efficient coarse spaces

General idea: Vc should contain the modes that the DD method does not handle efficiently.
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The errors are mainly localized in the overlap and “harmonic” everywhere up to the interfaces.

The residuals are zero everywhere up to the interfaces. These observations motivated different

constructions of coarse space functions. 44



Some references

• SHEM: solves eigenvalue problems along the edges of the domain decompositions and extends

harmonically.8

• GenEO: solves specific eigenvalues problems inside the subdomains. 9.

• GDSW: harmonic extension of the restriction of the null space of the Neumann matrix to the

edges and vertices. 10

8Gander, Loneland, SHEM: an optimal coarse space for RAS and its multiscale approximation,

DDXXIII, 2016.
9Spillane, Dolean, Huaret, Nataf, Pechstein, Scheichl, Abstract robust coarse spaces for systems of

PDEs via generalized eigenvalues problems in the overlap, Num. Mat., 2014
10Dorhmann, Klawonn, Widlund, A Family of Energy Minimizing Coarse Spaces for Overlapping

Schwarz Preconditioners, DXVII, 2008.
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A more recent approach

Theorem (Ciaramella, V., 2022)

Consider the substructured PSM, with A = I − G. Let (ψj , λj)j=1 be eigenpairs of G . Then,

if Vc = span {ψj}mj=1, then

• ψj ∈ Kern(T ), where T is the two-level iteration matrix, j = 1, . . . ,m.

• ρ(T ) = |λm+1|.

• Approximate numerically the slowest modes of G . 11.

• Compute them analytically (if you dare :)) 12

11Ciaramella, V.,Spectral coarse spaces for the substructured parallel Schwarz method, J. Sc. Comp.,

2022
12Cuvelier, Gander, Halpern, Fundamental coarse spaces components for Schwarz methods with

crosspoints, DDXXVI, 2022.

46



Extension to many subdomains case for nonoverlapping methods

• Definition of the algorithm maybe not be unique (arbitrariness in the

Dirichlet-Neumann).

• Neumann problems are not well-posed for floating subdomains (ad-hoc solutions).

• Both Dirichlet-Neumann and Neumann-Neumann are scalable for growing chains of

fixed size subdomains (Chaouqui et al., 2018).

• Both Dirichlet-Neumann and Neumann-Neumann are not well-posed at the continuous

level in presence of cross-points. (Chaudet-Dumas, Gander, 2022), (Chaudet-Dumas,

Gander, 2023).

· · ·

· · ·

· · ·

· · ·
Ω1 Ω2 ΩN−1 ΩN

Ω1
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Ω4
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Multiphysics problems and the

optimized Schwarz method



An instance of multiphysics problem

Industry

A

Porous medium

Water
Well

Mathematical model

Atmospheric Eq.

Navier-Stokes Eq.
Eq. for the contaminant

Darcy Eq.
Eq. for the contaminant
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Monolitich approach

Let uAt, uFl, uPm be the unknowns of the Atmospheric, Fluid and Porous medium

problem.

Monolitich approach

 AAt CAt,Fl CAt,Pm

CFl,At AFl CFl,Pm

CPm,At CPm,Fl APm


 uAt

uFl

uPm

 =

 fAt

fFl

fPm


A monolithic approach is not always feasible:

• Physical phenomena can have very different time and space scales.

• Linear system has particular structure with blocks of different nature. Need for

advanced problem-dependent solvers.
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An instance of iterative decoupled approach

For n = 1, 2, . . .AAt 0 0

0 AFl 0

0 0 APm


 unAt

unFl

unPm

 =

 0 CAt,Fl CAt,Pm

CFl,At 0 CFl,Pm

CPm,At CPm,Fl 0


un−1

At

un−1
Fl

un−1
Pm

+

 fAt

fFl

fPm



Possibility to recycle ad-hoc solvers and codes for each subproblem.

Convergence can depend badly on physical parameters.

Idea: Use the DD machinery to develop efficient and robust decoupled solvers.
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DD decoupled strategies

Spatial decompoisition is provided by the physics itself and the number of subdomains

is limited.

Natural DD framework involves nonoverlapping subdomain:13

Dirichlet-Neumann can be very efficient in a few regimes but it is not robust.

Optimized Schwarz methods are more efficient due to the possibility of optimizing the

transmission conditions.

13About overlapping approaches see ICDD method of Discacciati, Gervasio, and Quarteroni, SIAM J.

Control Optim. (2013).

51



Optimized Schwarz methods

A prototype example: diffusion equation with discontinuous coefficient.

−ν1∆u1 = f in Ω1,

−ν2∆u2 = f in Ω2,

u1 = u2 onΓ,

ν1∂xu1 = ν2∂xu2 onΓ.

Ω1 Ω2

Γ

Equivalent but more effective transmission conditions:

(ν1∂x + p1)u1 = (ν2∂x + p1)u2 on Γ,

(−ν2∂x + p2)u2 = (−ν1∂x + p2)u1 on Γ.

−ν1∆un1 = f in Ω1, (ν1∂x + p1)un1 = (ν2∂x + p1)un−1
2 on Γ

−ν2∆un2 = f in Ω2, (−ν2∂x + p2)un2 = (−ν1∂x + p2)un−1
1 on Γ.
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Fourier analysis: find the optimized transmission conditions

Remark: We could use even more general transmission conditions! Laplace-beltrami on

the interface, nonlocal operators..

Using Fourier analysis, one obtains the convergence factor

ρ(k , p1, p2) =

∣∣∣∣ν2|k| − p1

ν1|k|+ p1

ν1|k | − p2

ν2|k |+ p2

∣∣∣∣ .
Rescaling p1 = ν2p and p2 = ν1q for a p, q ∈ R, we solve for

(p?, q?) := argminp,q∈R+ max
k∈[kmin,kmax]

ρ(k , p, q).
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Optimized Schwarz methods take advantage of heterogeneities

Define λ := ν1
ν2

, it has been proven [Dubois, Gander, Num. Alg., 2015]

If λ ≥ 1 max
k∈[kmin,kmax]

ρ(k , p?, q?) =
1

λ
− 4(λ+ 1)

λ(λ− 1)

√
kmin

π
h

1
2 + O(h).

If λ < 1 max
k∈[kmin,kmax]

ρ(k , p?, q?) = λ− 4(λ+ 1)λ

1− λ

√
kmin

π
h

1
2 + O(h).

• Convergence is faster for λ≪ 1 and λ≫ 1.

• Mesh independent convergence for λ 6= 1.

• Compare with classical Schwarz which needs a coarse space in order to be robust (see

yesterday lectures).

• Extension to general second order elliptic PDEs [Gander, V., SISC, 2019].

• Extension to decompositions not aligned with the discontinuities [Gu, Kwok, J. Sci.

comp., 2021]
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Derivation of optimized transmission conditions

• Fluid-structure problems: [Badia, Nobile, Vergara, 2008], [Badia, Nobile, Vergara,

2009], [Gerardo-Giorda, Nobile, Vergara, 2010]

• Second order PDEs: [Gander-Dubois, 2015], [Gander, V., 2019].

• Wave-diffusion coupling: [Gander, V., 2018], [Chouly, Klein, 2021].

• Ocean-atmosphere coupling: [Lemaire, Blayo, Debreu, 2015], [Thery, Pelletier,

Lemaire, Blayo, 2021].

• Electromagnetic problems: [Dolean, Gander, Veneros, Zhang, 2016].

• Stokes-Darcy coupling: [Discacciati, Quarteroni, Valli 2007],[Discacciati, Gerardo

Giorda, 2018], [Cao, Gunzburger, He, Wang, 2011,2014], [Gander, V., 2019], [Phuong

Hoang, Lee, 2021], [Discacciati, V., 2023]...
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Nonlinear preconditioning



What does it mean to “precondition” a nonlinear system?

One possible definition14:
“The nonlinear system is transformed into a new nonlinear system, which has the same

solution as the original system. For certain applications the non linearities of the new

function are more balanced and, as a result, the (inexact) Newton method converges

more rapidly.”

G (F (u)) = 0,

F (H(y)), u = H−1(y),

M−1Au = M−1b, (left prec.),

AP−1y = b, Pu = y (right prec.).

See also 15 for a review with an historical flavour.

14X.-C. Cai and D. E. Keyes. Nonlinearly preconditioned inexact Newton algorithms, 2002
15M. J. Gander, On the origins of linear and nonlinear preconditioning, 2017
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The RASPEN method16

Question: How to define the RAS method for nonlinear problems?

Answer: Introduce operators Gj such that Gj(u) is the solution of

RjF (PjGj(u) + (I − PjRj)u) = 0.

Sanity check: If F (u) = Au − f , then Gj(u
n−1) = A−1

j Rj(f − A(I − PjRj)u
n−1), i.e. a

subdomain solution with right hand side f and Dirichlet BC. given by un−1.

Definition: The nonlinear RAS method reads

un =
N∑
j=1

P̃jGj(u
n−1), ∀n ∈ N∗.

. RASPEN= Restricted Additive Schwarz Preconditioning Exact Newton.

16Dolean et al, Nonlinear Preconditioning: How to Use a Nonlinear Schwarz Method to Precondition

Newton’s Method, 2016.
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The RASPEN method

Stationary iterative methods

Linear case

un = un−1 + M−1(f − Aun−1)

Nonlinear case

un =
N∑
j=1

P̃jGj(u
n−1).

If {un}n∈N∗ converges, i.e. un → u∗, then u∗ satisfies

u∗ = u∗ + M−1(f − Au∗).

M−1Au∗ = M−1f .

→ apply a Krylov method!

u∗ =
N∑
j=1

P̃jGj(u
∗).

F(u∗) := u∗ −
N∑
j=1

P̃jGj(u
∗) = 0.

→ apply Newton’s method! 58



Summary

Suppose you aim to solve F (u) = 0.

Question: How can you use a DD method for a nonlinear problem?

• As a nonlinear iterative method.

• As a preconditioner for the Jacobian system inside a Newton’s method (notation

Newton-Krylov-DD). Several works from Klawonn et al. (2014,2016).

• As a right preconditioner for Newton’s method, e.g. NKS-RAS by Cai et al., (2011,2018).

• As a left preconditioners for Newton’s method, e.g. the RASPEN method (2016), the

ORASPEN (2020).
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Numerical examples: Forchheimer’s equation

q(−λ(x)u(x)′))′ = f (x) in Ω,

u(0) = 1 and u(1) = e,

Parameters:

q(y) := sign(y)
−1+
√

1+4|y |
2 , λ(x) = 2 + cos(5πx), f (x) = 50 sin(5πx)ex . Nh = 103, N = 5,

δ = 4h, u0 = 105.
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Numerical examples: Nonlinear diffusion equation

−∇ ·
(
(1 + u2)∇u

)
= 1, in (0, 1)2 =: Ω,

u = 0, on ∂Ω.

Parameters: Nh ≈ 103, N = 4, δ = 4h, u0 = 105.
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The End

Thank you!

Codes and exercise sheet available at https://github.com/vanzantom/

Contact: tommaso.vanzan@epfl.ch
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