

Krylov Subspace Methods

Hussam AI Daas STFC, Rutherford Appleton Laboratory

Research School on Iterative Methods for PDEs 2023 Laboratoire Jacques-Louis Lions, Paris

Outline

Introduction

Krylov Subspace Methods

Projection Methods Minimization Properties Algorithms Arnoldi and GMRES Lanczos and CG

Convergence and Preconditioning

Recent Advances

Introduction

Krylov Subspace Methods Projection Methods Minimization Properties

Algorithms Arnoldi and GMRES Lanczos and CG

Convergence and Preconditioning

Recent Advances

References

- ▶ Y. Saad. Iterative Methods for Sparse Linear Systems
- ▶ J. Liesen and Z. Strakoš. Krylov Subspace Methods
- G. Ciarmella and M. Gander. Iterative Methods and Preconditioners for Systems of Linear Equations

Notation

- $n \gg 1$, integer
- $A \in \mathbb{R}^{n \times n}$, nonsingular matrix
- ▶ $b \in \mathbb{R}^n$, vector
- $\|\cdot\|_2$, the Euclidean norm
- A^{\top} is the transpoe of A
- A is symmetric if $A^{\top} = A$
- A is symmetric positive definite (SPD) if $A^{\top} = A$ and $||x||_A = x^{\top}Ax > 0, \ \forall x \neq 0$
- When available and real λ₁(A) ≥ ... ≥ λ_n(A) the eigenvalues of A
- nnz(A) is the number of nonzero values in A

Linear Systems of Equations

$$Ax = b$$

arises in a most scientific applications

- Control
- Optimizatioin
- Simulations
- etc

Example

Example

Runtime figure from Pierre Jolivet's PhD thesis

Sparse Matrices

 $nnz(A)/n \ll n$

Figure: Sparsirty pattern of a discretized 2D Laplacian

Facilities Council

Direct Sparse Solvers

• A SPD,
$$A = PLL^{\top}P^{\top}$$

• A Symmetric, $A = PLDL^{\top}P^{\top}$

• A nonsingular,
$$A = LUP^{\top}$$

$$\blacktriangleright$$
 $A = QRP^{\top}$

Software available: **HSL**, MUMPS, PARDISO, SuperLU, UMFPACK, CholMOD

Direct Sparse Solvers: Properties

Robust

- Black box
- Requires access to its elements values
- Memory demanding
- Too much unnecessary accuracy most of the times
- Not easy to parallelize

Direct Sparse Solvers: Fill-in

Figure: Sparsirty pattern of a A and L^{T} for discretized 2D Laplacian

Direct Sparse Solvers: Fill-in

Figure: Sparsirty pattern of a A and L^{T} for discretized 3D Laplacian

Introduction

Krylov Subspace Methods Projection Methods Minimization Properties

Algorithms Arnoldi and GMRES Lanczos and CG

Convergence and Preconditioning

Recent Advances

Cayley–Hamilton Theorem

•
$$\chi_A(\lambda) = det(\lambda I - A) = \sum_{k=0}^n a_k \lambda^k$$

• $\chi_A(A) = 0$
• $A^{-1}b = \sum_{k=1}^n -a_k/a_0 A^k b$ for any $b \in \mathbb{R}^n$
 $Ax = b$ yields $x \in \text{span}\{b, Ab, A^2b, \dots, A^{n-1}b\}$

Krylov Subspace: Definition

The kth Krylov subspace associated with A and b is

$$\mathcal{K}_k(A, b) = \operatorname{span}\{b, Ab, \dots, A^{k-1}b\}$$

- Requires only matrix-vector product
- $\blacktriangleright \ \mathcal{K}_1(A,b) \subset \cdots \subset \mathcal{K}_k(A,b) \subset \cdots \subset \mathcal{K}_{\nu}(A,b) = \mathcal{K}_{\nu+1}(A,b)$

•
$$k \leq \nu$$
, $\dim(\mathcal{K}_k) = k$

► $z \in \mathcal{K}_k(A, b)$, $\exists q$ of order < k, z = q(A)b

Search and Constraint Subspaces

• $\mathcal{K}_k, \mathcal{L}_k \subset \mathbb{R}^n$ of dim k

• Look for $x_k \in \mathcal{K}_k$ for $r_k = b - Ax_k \perp \mathcal{L}_k$.

• There are k DOFs:
$$x_k = V_{\mathcal{K}_k} u_k$$

► There are k constraints $V_{\mathcal{L}_k}^{\top} A V_{\mathcal{K}_k} u_k = V_{\mathcal{L}_k} b$. Hence, if $V_{\mathcal{L}_k}^{\top} A V_{\mathcal{K}_k}$ is nonsingular, x_k is unique! Let's build $\mathcal{K}_1 \subset \mathcal{K}_2 \cdots$, $\mathcal{L}_1 \subset \mathcal{L}_2 \cdots$ and solve iteratively Ax = b

Krylov Subspace as Projection Methods

The kth Krylov subspace associated with A and b is

$$\mathcal{K}_k(A,b) = \operatorname{span}\{b,Ab,\ldots,A^{k-1}b\}$$

A is nonsingular and K_k = K_k(A, b) spanned by V_k, L = AK_k
 V_k[⊤]A[⊤]AV_k is nonsingular

$$> x_k = V_k (V_k^\top A^\top A V_k)^{-1} V_k^\top A^\top b$$

- A is SPD and $\mathcal{K}_k = \mathcal{L}_k = \mathcal{K}_k(A, b)$ spanned by V_k
- $V_k^{\top} A V_k$ is nonsingular

$$\blacktriangleright x_k = V_k (V_k^\top A V_k)^{-1} V_k^\top b$$

Minimizing Residual

A is nonsingular
$$\mathcal{K}_k = \mathcal{K}_k(A, b)$$
 spanned by V_k , $\mathcal{L}_k = A\mathcal{K}_k(A, b)$
 $\blacktriangleright x_k = V_k (V_k^\top A^\top A V_k)^{-1} V_k^\top A^\top b$
 $\|b - A x_k\|_2 = \min_{z \in \mathcal{K}_k} \|b - A z\|_2$

Minimizing Error

A is SPD
$$\mathcal{K}_k = \mathcal{L}_k = \mathcal{K}_k(A, b)$$
 spanned by V_k
• $x_k = V_k (V_k^\top A V_k)^{-1} V_k^\top b$
 $\|x - x_k\|_A = \min_{z \in \mathcal{K}_k} \|x - z\|_A$

Krylov subspace basis

Is $\{b, Ab, \ldots, A^{k-1}b\}$ practical basis? Remember the power method? If $V_k = (b \ Ab \ \cdots \ A^{k-1}b)$, it will most likely be very badly

conditioned even for small k and hence poor approximate solution.

Arnoldi Procedure I

Algorithm Arnoldi Procedure, Classical Gram–Schmidt Orthogonalization

Require: A, $b \neq 0$, k > 0 **Ensure:** orthonormal vectors $V_k = [v_1, ..., v_k]$ spanning $\mathcal{K}_k(A, b)$. 1: $v_1 = b/||b||_2$ 2: **for** j = 1 : k - 1 **do** 3: $\hat{v}_{j+1} = Av_j - \sum_{i=1}^{j} h_{i,j}v_i$, where $h_{i,j} = v_i^{\top}Av_j$, 4: $h_{j+1,j} = ||\hat{v}_{j+1}||_2$, if $h_{j+1,j} = 0$ then stop 5: $v_{j+1} = \hat{v}_{j+1}/h_{j+1,j}$

$$\forall j \leq k, \ AV_j = V_{j+1}H_j$$

where $H_j \in \mathbb{R}^{(j+1) \times j}$ is Hessenberg matrix

Arnoldi Procedure II

Algorithm Arnoldi Procedure, Modified Gram–Schmidt Orthogonalization

Require: A, $b \neq 0$, k > 0**Ensure:** orthonormal vectors $V_k = [v_1, \ldots, v_k]$ spanning $\mathcal{K}_k(A, b)$. 1: $v_1 = b/||b||_2$ 2: for i = 1 : k - 1 do 3: $\hat{v}_{i+1} = Av_i$ 4: **for** i = 1 : i **do** $h_{i,i} = v_i^{\top} \hat{v}_{i+1}$ 5: $\hat{v}_{i+1} = \hat{v}_{i+1} - v_i h_{i,i}$ 6: $h_{i+1,i} = \|\hat{v}_{i+1}\|_2$, if $h_{i+1,i} = 0$ then stop 7: $v_{i+1} = \hat{v}_{i+1} / h_{i+1,i}$ 8:

$$orall j \leq k, \; AV_j = V_{j+1}H_j$$
 where $H_j \in \mathbb{R}^{(j+1) imes j}$ is Hessenberg matrix 2

GMRES

Saad and Schultz 1986

Algorithm GMRES, Classical Gram–Schmidt Orthogonalization

Require: A, $b \neq 0, k > 0$ **Ensure:** x_k approximate solution to Ax = b1: $\beta = ||b||_2, v_1 = b/\beta$ 2: **for** j = 1 : k **do** 3: $\hat{v}_{j+1} = Av_j - \sum_{i=1}^{j} h_{i,j}v_i$, where $h_{i,j} = v_i^{\top}Av_j$, 4: $h_{j+1,j} = ||\hat{v}_{j+1}||_2$, if $h_{j+1,j} = 0$ set k := j and go to 6 5: $v_{j+1} = \hat{v}_{j+1}/h_{j+1,j}$ 6: $x_k = \beta V_k y_k$ where y_k minimizes $||H_k y - \beta e_1||_2$

GMRES

$$AV_{k} = V_{k+1}H_{k}$$
$$\|b - AV_{k}y\|_{2} = \|\beta V_{k+1}e_{1} - AV_{k}y\|_{2}$$
$$= \|\beta V_{k+1}e_{1} - V_{k+1}H_{k}y\|_{2}$$
$$= \|\beta e_{1} - H_{k}y\|_{2}$$
$$\geq \|\beta e_{1} - H_{k}y_{k}\|_{2}$$
$$= \|b - Ax_{k}\|_{2}$$

The Hessenberg Matrix in GMRES

$$\forall j \le k, \ AV_j = V_{j+1}H_j$$
$$H_{j+1} = \begin{pmatrix} H_j & h_{1:j+1,j+1} \\ 0_{1,j} & h_{j+2,j+1} \end{pmatrix}$$

Its QR decomposition can be updated cheaply.

Figure: 10×9 Hessenberg matrix

Arnoldi Procedure with SPD A

Algorithm Arnoldi Procedure, Classical Gram–Schmidt Orthogonalization

Require: A SPD, $b \neq 0, k > 0$ **Ensure:** orthonormal vectors $V_k = [v_1, ..., v_k]$ spanning $\mathcal{K}_k(A, b)$. 1: $v_1 = b/||b||_2$ 2: **for** j = 1 : k - 1 **do** 3: $\hat{v}_{j+1} = Av_j - \sum_{i=1}^{j} h_{i,j}v_i$, where $h_{i,j} = v_i^{\top}Av_j$, 4: $h_{j+1,j} = ||\hat{v}_{j+1}||_2$, if $h_{j+1,j} = 0$ then stop 5: $v_{j+1} = \hat{v}_{j+1}/h_{j+1,j}$

$$\forall j \leq k, \; AV_j = V_{j+1}H_j = V_j \bar{H}_j + v_{j+1}h_{j+1,j}e_j^{ op}$$

where $ar{H}_j \in \mathbb{R}^{j imes j}$ is tridiagonal matrix

Lanczos Procedure

Lanczos 1950

Algorithm Lanczos Procedure

Require: A SPD. $b \neq 0$. k > 0**Ensure:** orthonormal vectors $V_k = [v_1, \ldots, v_k]$ spanning $\mathcal{K}_k(A, b)$. 1: $v_0 = 0$, $\beta_1 = 0$, $v_1 = b/||b||_2$ 2: for i = 1 : k - 1 do $\hat{v}_{i+1} = Av_i - \beta_i v_{i-1}$ 3: 4: $\alpha_i = \hat{\mathbf{v}}_{i+1}^\top \mathbf{v}_i$ 5: $\hat{v}_{i+1} = \hat{v}_{i+1} - \alpha_i v_i$ 6: $\beta_i = \|\hat{v}_{i+1}\|_2$, if $\beta_i = 0$ then stop 7: $v_{i+1} = \hat{v}_{i+1} / \beta_i$

$$\forall j \leq k, \; AV_j = V_{j+1}T_j = V_j \overline{T}_j + v_{j+1}\beta_{j+1}e_j^{ op}$$

Technology Facilities Council where $\mathcal{T}_i \in \mathbb{R}^{(j+1) imes j}$ is tridiagonal matrix $((\alpha_i), (\beta_i))$

CG I

A is SPD. Consider the quadratic function

$$\phi(x) = \frac{1}{2}x^{\top}Ax - x^{\top}b$$

Its gradient

Mir

$$\nabla \phi(x) = Ax - b$$

Then, minimizing ϕ is equivalent to solving Ax = b (unique stationary point).

Given x_j and some p_j , line search to find a minimizing α_j

$$\begin{aligned} x_{j+1} &= x_j + \alpha_j p_j. \\ \|x - x_{j+1}\|_A^2 &= \|x - x_j\|_A^2 + \alpha_j^2 p_j^\top A p_j - 2\alpha_j p_j^\top r_j. \end{aligned}$$

CG, II

Remains to define the search directions. $p_0 = b$ and $p_{j+1} = r_{j+1} + \frac{r_{j+1}^\top r_{j+1}}{r_j^\top r_j} p_j$ ensures $p_i^\top A p_j = 0$, $r_i^\top r_j = 0$ if $i \neq j$. $(\nabla \phi(x_j) = -r_j$, hence the name)

CG, II

Remains to define the search directions. $p_0 = b$ and $p_{j+1} = r_{j+1} + \frac{r_{j+1}^{\top} r_{j+1}}{r_j^{\top} r_j} p_j$ ensures $p_i^{\top} A p_j = 0$, $r_i^{\top} r_j = 0$ if $i \neq j$. $(\nabla \phi(x_j) = -r_j$, hence the name) Note $x - x_{j+1} = (x - x_j) - \alpha_j p_j$ where $\alpha_j = \frac{p_j^{\top} r_j}{p_j^{\top} A p_j} = \frac{p_j^{\top} A(x - x_j)}{p_j^{\top} A p_j}$ vields

$$\|x - x_j\|_A^2 = \|x - x_{j+1}\|_A^2 + \alpha_j^2 \|p_j\|_A^2$$
$$\|x - x_0\|_A^2 = \|x\|_A^2 = \|x - x_{j+1}\|_A^2 + \sum_{k=1}^j \alpha_k^2 \|p_k\|_A^2$$

$$\|x - x_{j+1}\|_{\mathcal{A}} = \min_{z \in \operatorname{span}\{p_0, \dots, p_j\}} \|x - z\|_{\mathcal{A}}$$

Actually, span{
$$p_0, p_1, \ldots, p_j$$
} = span{ $b, Ab, \ldots, A^j b$ }.
Indeed, $p_0 = b$, $p_k \in$ span{ r_k, p_{k-1} } and $p_k^\top A p_{k-1} = 0$

Hestenes and Stiefel 1952

Algorithm CG

Require: A SPD, $b \neq 0, k > 0$ **Ensure:** x_k approximate solution to Ax = b1: $x_0 = 0$, $r_0 = b$, $p_0 = r_0$ 2: for $j = 1, 2, \cdots$ do $\alpha_j = \frac{r_j^\top r_j}{p_j^\top A p_j}$ 3: 4: $x_{i+1} = x_i + \alpha_i p_i$ $r_{j+1} = r_j - \alpha_j A p_j$ $\beta_j = \frac{r_{j+1}^\top r_{j+1}}{r_j^\top r_j}$ 5: 6: $p_{i+1} = r_{i+1} + \beta_i p_i$ 7:

Introduction

Krylov Subspace Methods Projection Methods Minimization Properties

Algorithms Arnoldi and GMRES Lanczos and CG

Convergence and Preconditioning

Recent Advances

Convergence

Suppose $A = V \Lambda V^{-1}$ GMRES:

$$\begin{split} |b - Ax_k||_2 &= \min_{y \in \mathcal{K}_k(A,b)} \|b - Ay\|_2 \\ &= \min_{p \in \mathcal{P}_{k-1}} \|b - Ap(A)b\|_2 \\ &= \min_{q \in \mathcal{P}_k, q(0)=1} \|q(A)b\|_2 \\ &= \min_{q \in \mathcal{P}_k, q(0)=1} \|Vq(\Lambda)V^{-1}b\|_2 \\ &\leq \|V\|_2\|V^{-1}\|_2\|b\|_2 \min_{q \in \mathcal{P}_k, q(0)=1} \|q(\Lambda)\|_2 \end{split}$$

Convergence

CG:

$$\begin{aligned} \|x - x_k\|_A &= \min_{y \in \mathcal{K}_k(A,b)} \|x - y\|_A \\ &= \min_{q \in \mathcal{P}_k, q(0)=1} \|q(A)x\|_A \\ &\leq \min_{q \in \mathcal{P}_k, q(0)=1} \max_{\lambda \in [\lambda_n, \lambda_1]} |q(\lambda)| \|x\|_A \\ &\leq 2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^k \|x\|_A \end{aligned}$$

where $\kappa = \frac{\lambda_1}{\lambda_n}$ is the condition number

Preconditioning I

Transform

$$Ax = b$$

into

$$M^{-1}Ax = M^{-1}b$$

s.t. $M^{-1}A$ has nicer properties. General requirements

- Easy to set up
- Cheap to multiply by a vector
- Approximate A^{-1} in a certain way

For CG, the convergence depends heavily on $\kappa_2(A)$. For GMRES, yet to be discovered! Nonetheless, even though eigenvalues do not cover the whole picture, they are widely

considered in practice.

